Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T06:53:42.787Z Has data issue: false hasContentIssue false

Plasma etching of organic low-dielectric-constant polymers: comparative analysis

Published online by Cambridge University Press:  10 February 2011

M. R. Baklanov*
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
S. Vanhaelemeersch
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
C. Alaerts
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
K. Maex
Affiliation:
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium
*
*Corresponding author, on leave from Institute of Semiconductor Physics SB RAN, Novosibirsk, Russia
Get access

Abstract

The etch characteristics of the low-k dielectrics DVS BCB (BCB hereafter) and SILK in oxygen/fluorine plasmas are studied. In an O2/NF3 plasma afterglow, the etch rate of both polymers first increase linearly with increasing NF3 concentration, then decreases monotonously. A fluorine plasma afterglow does not etch either BCB nor SILK but strongly changes their chemical and optical properties. Reactive ion etching (RIE) of the polymers shows a different behaviour. The etch rate of SILK in a pure oxygen plasma is maximal, but BCB is etched slowly. The fluorine additives increase the etch rate of BCB. The etch rate of SILK decreases with increasing fluorine concentration. RIE in a pure SF6 plasma shows good etch characteristics and can be used for some practical applications. Mechanisms of the reactions are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, W.W. and Ho, P.S.. MRS Bulletin, 22, 10, 19 (1997).Google Scholar
2. Winters, H.F., Coburn, J.W.. Surf.Sci.Reports 14, 161 (1992).Google Scholar
3. Cain, S.R., Egitto, F.D., Emmi, F.. J.Vac.Sci.Technol., A5(4), 1578 (1987).Google Scholar
4. Watanabe, F. and Ohnishi, Y.. J.Vac.Sci.Technol. B4(1), 422 (1986).Google Scholar
5. Beckx, S., private communication.Google Scholar
6. Baklanov, M.R., Vanhaelemeersch, S. and Maex, K.. to be published.Google Scholar
7. Kudo, H., Shinohara, R., Yamada, M.. Mat.Res.Soc.Symp.Proc., 381, p.105 (1995)Google Scholar
8. Endo, K., Tatsumi, T.. J.Vac.Sci.Technol. A15(6), 3134 (1997).Google Scholar
9. Egitto, F.D., Emmi, F., Horwath, R.S.. J.Vac.Sci.Technol. B3(3), 893 (1985).Google Scholar
10. Turban, G., Rapeaux, M.. J.Electrochem.Soc., 130, 11, 2231 (1983).Google Scholar
11. Schier, M.. J.Electrochem.Soc., 142, 9, 3238 (1991).Google Scholar
12. Case, C., Kornblit, A.. SEMATECH Workshop on Low-K Materials, San Diego, CA, 1996 Google Scholar
13. Leu, J., Jensen, K.F.. J.Vac.Sci.Technol. A9(6), 2948, 1991 Google Scholar