Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-01T05:20:53.105Z Has data issue: false hasContentIssue false

PMN Based Thin Film Capacitor for Decoupling Applications in High Speed Digital Circuits

Published online by Cambridge University Press:  10 February 2011

F. Fukumaru
Affiliation:
Kyocera Corp., R&D Center Kagoshima, Kokubu, Kagoshima, 899-4312, Japan
S. Nagakari
Affiliation:
Kyocera Corp., R&D Center Kagoshima, Kokubu, Kagoshima, 899-4312, Japan
S. Konushi
Affiliation:
Kyocera Corp., R&D Center Kagoshima, Kokubu, Kagoshima, 899-4312, Japan
H. Nishikawa
Affiliation:
Kyocera Corp., R&D Center Kagoshima, Kokubu, Kagoshima, 899-4312, Japan
K. Kamigaki
Affiliation:
Kyocera Corp., R&D Center Kagoshima, Kokubu, Kagoshima, 899-4312, Japan
S. Nambu
Affiliation:
Kyocera Corp., R&D Center Kagoshima, Kokubu, Kagoshima, 899-4312, Japan
Get access

Abstract

A new type of Pb(Mgl1/3Nb2/3)O3 (PMN) based thin film decoupling capacitor for high speed digital circuits is presented. The thin film capacitor fabricated on a ceramic Al2O3 substrate with Ball Grid Array (BGA) terminations showed low impedance and low inductance characteristics in the 100MHz – 1GHz range. The sol-gel derived Pb(Mg1/3Nb2/3)O3-PbTiO3(PMN-PT) thin film showed a high dielectric constant (k=3000) with broad temperature dependence. The capacitor consists of a PMN-PT thin film (0.8 µm thickness), Au electrodes, and solder balls mounted on the upper electrode as terminals. Numerical simulations based on the Partial Element Equivalent Circuit (PEEC) model were conducted for the design of electrodes, which gives low inductance of the capacitor. It was shown that the thin film 1.2mm × 1.2mm capacitor mounted on a board exhibits high capacitance of 20 nF, low ESR of 100 mΩ, and low inductance of 135 pH. These values are in good agreement with the results of numerical simulations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. McCredie, B. D. and Becker, W. D., IEEE Trans. Comp., Packag., Manufact. Technol. Part B 19. P.461472 (1996).Google Scholar
2. Libous, J. P. and O'Connor, D. P., IEEE Trans. Comp., Packag., Manufact. Technol. Part B 20. P.266271 (1997).Google Scholar
3. Becker, W. D., Eckhardt, J., Frech, R. W., Katopis, G. A., Klink, E., McAllister, M. F., McNamara, T. G., Muench, P., Richter, S. R., and Smith, H. H., IEEE Trans. Comp., Packag., Manufact. Technol. Part B 21, p.157163 (1998).Google Scholar
4. Chen, H. H. and Neely, J. S., IEEE Trans. Comp., Packag., Manufact. Technol. Part B 21, p.209215 (1998).Google Scholar
5. Galvagni, J., Randall, S., and Roughan, P., and Templeton, A., Proc. Electron. Compon. Technol. Conf. 44th, p. 234238 (1994).Google Scholar
6. Perfecto, E. D., Longworth, H. P., Sherif, R. A., Ellsworth, M. J., and Yu, R. Jr, IEEE Trans. Comp., Packag., Manufact. Technol. Part B 21, p.2027 (1998).Google Scholar
7. Schwartz, R. W., Dimos, D., Lockwood, S. J., and Torres, V. M., Integrated Ferroelectrics 4, p.165174 (1994).Google Scholar
8. Dimos, D., Lockwood, S. J., Schwarts, R. W., and Rodgers, S. T., IEEE Trans. Comp., Packag., Manufact. Technol. Part A 18, p. 174179 (1995).Google Scholar
9. Nagakari, S., Kamigaki, K., and Nambu, S., Jpn. J. Appl. Phys., 35 [9B], p.49334935 (1996).Google Scholar
10. Nambu, S. and Sugimoto, K., Ferroelectrics 198, p.1130 (1997).Google Scholar
11. Mishima, T., Fujioka, H., Nagakari, S., Kamigaki, K., and Nambu, S., Jpn. J. Appl. 36 [9B], p.61416144 (1997).Google Scholar
12. Ruehli, A., IBM J. Res. Develop., 16, p.470481 (1972).Google Scholar