Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T06:17:21.275Z Has data issue: false hasContentIssue false

Point Defect Interactions with Extended Defects in Silicon

Published online by Cambridge University Press:  10 February 2011

J. F. Justo
Affiliation:
Instituto de Física - USP, CP 66318, CEP 05315-970, Sāo Paulo - SP, Brazil
A. Antonelli
Affiliation:
Instituto de Física Gleb Wataghin - UNICAMP, CEP 13083-970, Campinas - SP, Brazil
A. Fazzio
Affiliation:
Instituto de Física - USP, CP 66318, CEP 05315-970, Sāo Paulo - SP, Brazil
Get access

Abstract

We investigated the interaction of point defects (vacancy and self-interstitials) with an intrinsic stacking fault in silicon. The calculations were carried out using ab initio total energy methods. The results show that point defects at an intrinsic stacking fault display a different behavior as compared to the same defect in the crystalline environment. This is evidenced by differences in formation energies and electronic structures. These results suggest that there is migration of point defects from the bulk to a stacking fault. This could affect the dislocation mobility in the crystal.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alexander, H., in Dislocation in Solids, ed. by Nabarro, F. R. N., Vol. 7, (North Holland, Amsterdam, 1986), p. 115.Google Scholar
[2] Hirth, J. P. and Lothe, J., Theory of Dislocations (Wiley, New York, 1982).Google Scholar
[3] Bulatov, V. V., Yip, S., and Argon, A. S., Phil. Mag. A 72, 453 (1995).Google Scholar
[4] Bulatov, V. V., Justo, J. F., Cai, W., and Yip, S., Phys. Rev. Lett. 79, 5042 (1997).Google Scholar
[5] Csdnyi, G., Ismail-Beigi, S., and Arias, T. A., Phys. Rev. Lett. 80, 3984 (1998).Google Scholar
[6] Lehto, N. and Oberg, S., Phys. Rev. B 56, 12 706 (1997).Google Scholar
[7] Chou, M. Y., Cohen, M. L., and Louie, S. G., Phys. Rev. B 32, 7979 (1985).Google Scholar
[8] Lehto, N., Phys. Rev. B 55, 15 601 (1997).Google Scholar
[9] Stampfl, C. and Walle, C. G. Van de, Phys. Rev. B 57, 15 052 (1998).Google Scholar
[10] Weber, J., Solid State Phenomena 37–38, pp. 1324 (1994).Google Scholar
[11] Bulatov, V., Abraham, F., Kubin, L., Devincre, B., and Yip, S., Nature 391, 669 (1998).Google Scholar
[12] Kohn, W. and Sham, L. J., Phys. Rev. 140, 1133A (1965).Google Scholar
[13] Car, R. and Parrinello, M., Phys. Rev. Lett. 55, 2471 (1985).Google Scholar
[14] Bachelet, G. B., Hamann, D. R., and Schluter, M., Phys. Rev. B 26, 4199 (1982).Google Scholar
[15] Kleinmann, L. and Bylander, D. M., Phys. Rev. Lett. 48, 1425 (1982).Google Scholar
[16] Wessel, K. and Alexander, H., Phil. Mag. 35, 1523 (1977).Google Scholar
[17] Antonelli, A., Kaxiras, E., and Chadi, D. J., Phys. Rev. Lett. 81, 2088 (1998).Google Scholar
[18] Blochl, P. E., Smargiassi, E., Car, R., Laks, D. B., Andreoni, W., and Pantelides, S. T., Phys. Rev. Lett. 70, 2435 (1993).Google Scholar
[19] Zhu, J., T. Diaz de la Rubia, Yang, L. H., and Mailhiot, C., Phys. Rev. B 54, 4741 (1996).Google Scholar
[20] Huang, J., Meyer, M., and Pontikis, V., Phys. Rev. Lett. 63, 628 (1989).Google Scholar