Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T20:33:05.546Z Has data issue: false hasContentIssue false

Polysilicon Films Formed On Alumina By Aluminium Induced Crystallization Of Amorphous Silicon

Published online by Cambridge University Press:  01 February 2011

Abdelilah Slaoui
Affiliation:
Abdelillah.Slaoui@iness.c-strasbourg.fr, CNRS-ULP, InESS, 23 rue du loess, Strasbourg, N/A, 67037, France
Claude Maurice
Affiliation:
maurice@emse.fr, Ecole des Mines, SMS Centre, 158, cours Fauriel, Saint Etienne, N/A, N/A42023, France
Get access

Abstract

We investigated the structural quality of polysilicon films fabricated by the aluminium induced crystallization (AIC) of amorphous silicon on alumina substrates. We analyzed the overall crystallographic quality of the poly-Si films in terms of grain size distribution and grain orientation versus crystallization temperature. For these studies, we used extensively the orientation imaging micrograph (OIM) technique, a very powerful tool that allows elucidating the inner-grain structure, the grain boundaries, the grain orientation. From our analysis, we may conclude that the polysilicon films formed by AIC on alumina substrates have the following features: (i) for all investigated temperatures, most of the silicon grains have a deviation angle from (100) crystallographic orientation between 5 and 25°; (ii) increasing the annealing temperature tends to decrease the (100) preferred orientation; (iii) the angular boundary distribution revealed that the main defects are those that have been observed inside isolated dentrites, namely low angle boundaries (<2°) and coincident site lattice boundaries such as Σ3, Σ9 and Σ27.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Olson, G.L. and Roth, J.A., Mat. Sci. Report. 3, 1 (1988).Google Scholar
2. Song, D., Widenborg, P., Straub, A., Huang, Y. and Aberle, A.G., Tech. Digest, 14th International Photovoltaic Science and Eng. Conf., Bangkok (January, 2004) p. 327 Google Scholar
3. Kwizera, P. and Reif, R., Appl. Phys. Lett. 41, 379 (1982).Google Scholar
4. Yoon, S.Y., Kim, K.H., Kim, C.O., Oh, J.Y. and Jang, J., J. Appl. Phys. 82, 5865 (1997).Google Scholar
5. Fonash, Liu et, Appl. Phys. Lett. 62, 2554 (1992).Google Scholar
6. Yoon, S.Y., Kim, K.H., Oh, J.Y. and Jang, J., Jpn. J. Appl. Phys. 37, 7193 (1998).Google Scholar
7. Nast, O., Puzzer, T., Koschier, L.M., Sproul, A.B. and Wenham, S.R., Appl. Phys. Lett. 73, 3214 (1998).Google Scholar
8. Slaoui, A., Pihan, E. and Rusu, M., 17th European Photovoltaïc Solar Energy Conf., Munich (Octobre 2001), p.1462 Google Scholar
9. Aberle, A.G., Harder, N.-P. and Oelting, S., J. Crystal Growth 226, 209 (2001).Google Scholar
10. Rau, B., Sieber, I., Schneider, J., Muske, M., Stöger-Pollach, M., Schattschneider, P., Gall, S., Fuhs, W., Journal of Crystal Growth 270, 3-4, 396 (2004).Google Scholar
11. Carnel, L., Gordon, I., Dekkers, H.F.W., Gestel, D. Van, Beaucarne, G., Poortmans, J., Thin Solid Films 487, 147 (2005)Google Scholar
12. Chang, Y.J., Oh, J.H., Kim, K.H., Ja, J.,g, Kim, D.I. and Oh, K.O., J. Vac. Sci. Technol. A22(3), 650(2004).Google Scholar
13. Pihan, E., Focsa, A., Slaoui, A. and Maurice, C., Symposium “Thin Films and Nanostructured Materials for Photovoltaics”, E-MRS conference, Strasbourg (June 2005), Ed. Brabec, C., Poortmans, J., Waldau, J., Slaoui, A., in press.Google Scholar
14. Slaoui, A., Pihan, E., Focsa, A., Beaucarne, G., Poortmans, J. Proceeding of 31st IEEE Photovoltaic Specialists Conference, Orlando (January 2005), p.1127.Google Scholar
15. Crespo, D., Pradell, T., Clavaguera, N., Clavaguera-Mora, M.T., Materials Science and Engineering A 238, 160 (1997).Google Scholar