Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-11T08:14:35.493Z Has data issue: false hasContentIssue false

Positron Annihilation Investigation in Ion-implanted Yttria-stabilized Zirconia

Published online by Cambridge University Press:  26 February 2011

Robert Grynszpan
Affiliation:
robert.grynszpan@iscsa.cnrs.fr, DGA-DCE-CTA-LOT, 16 bis Av. Pr. de la Côte d’Or, Arcueil, ., 94114 Arcueil, France
G. Brauer
Affiliation:
robert.grynszpan@noos.fr
W. Anwand
Affiliation:
robert.grynszpan@noos.fr
Get access

Abstract

Implantation with a variety of sub-MeV ions (He, Ar, Xe, O, and I) were performed on cubic single crystals of yttria-stabilized zirconia in order to assess the capability of such material to withstand high fluences as a confinement matrix for nuclear waste. In this work, we confronted the results of both Doppler Broadening using slow positron implantation spectroscopy (DB-SPIS) and the Rutherford Backscattering/Channeling spectroscopy (RBS-C) which are sensitive to lattice defects almost opposite in nature. In spite of their difference in defect specific sensitivity, and except for a precursory damage production stage almost exclusively exhibited by SPIS for very low doses (< 0.1 dpa), either techniques show a similar fluence dependence, which exhibits 3 stages starting respectively around 0.1, 2 and 3 dpa, regardless of the damaging ion. However, owing to the stage I plateau displayed in the variation of the DB-SPIS lineshape parameter, we were able to estimate an ion-mass dependence of the critical size of open-volume defects reached before the production of new predominant defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Degueldre, C., Paratte, J.M., J. Nucl. Mater. 274, 1 (1999).Google Scholar
[2] Yasuda, K., Kinoshita, C., Matsurama, S., Ryazanov, A.I., J. Nucl. Mater. 319, 74 (2003)Google Scholar
[3] Coleman, P.G. (Edit.), “Positron Beams and their Applications”, World Scientific-Singapore, 2000, pp. 1325.Google Scholar
[4] Fradin, J., Grynszpan, R.I., Thomé, L., Anwand, W., Brauer, G., Nucl. Instr. Meth. B 175, 516 (2001).Google Scholar
[5] Costantini, J.M., Beuneu, F., Grynszpan, R.I., Trautmann, C., Nucl. Instr. Meth. B 191, 616 (2002).Google Scholar
[6] Grynszpan, R.I., Saudé, S., Anwand, W., Brauer, G., Nucl. Instr. Meth. B 241, 526 (2005).Google Scholar
[7] Anwand, W., Kissener, H.R., Brauer, G., Acta Phys. Pol. A 88, 7 (1995).Google Scholar
[8] Coleman, P.G., Kuna, S., Grynszpan, R.I., Mater. Sci. Forum, 255, 668 (1997).Google Scholar
[9] Veen, A.van, Schut, H., de Vries, J., Hakvoort, A., Ijpma, M. R., in Positron Beams for Solids and Surfaces, ed. Shultz, P.J., et al. , AIP Conf. Proc., NY 218 (1990) 171.Google Scholar
[10] Asoka-Kumar, P., Lynn, K. G., Welch, D. G., J. Appl. Phys. 76, 4035 (1994).Google Scholar
[11] Brauer, G., Anwand, W., Nicht, E.-M., Kuriplach, J., I.Prochazka, Becvar, F., Osipowicz, A., Coleman, P.G., Phys.Rev.B 62, 5199 (2000).Google Scholar
[12] Wang, Z., Chen, Z.Q., Zhu, J., Wang, S.J., Guo, X., Rad. Phys. Chem. 58, 697 (2000).Google Scholar
[13] Ziegler, J.F., Biersack, J.P., Littmark, U., “The Stopping and Range of Ions in Solids,” Vol. 1, ed. Ziegler, J.F., Pergamon, New York, 1985.Google Scholar
[14] Fradin, J., Thesis ENSAM, Paris, 2002.Google Scholar
[15] Coleman, P.G., Burrows, C.P., Knights, A.P., Appl. Phys. Lett. 80(6), 947 (2002).Google Scholar
[16] Krause-Rehberg, R., Boerner, F., Redmann, F., Gebauer, J., Koegler, R., Kliemann, R., Skorupa, W., Egger, W., Koegel, G., Triftshaeuser, W., Physica B 308, 443 (2001).Google Scholar
[17] Heinig, K.H., Jaeger, H.U., in Proc. 1st ENDEASD Meeting, IMEC, Leuven, 1999, p. 297.Google Scholar
[18] Valkealathi, S., Nieminen, R.M., Appl. Phys. A 35, 51 (1984).Google Scholar
[19] Sickafus, K.E., Matzke, Hj., Hartmann, Th., Yasuda, K., Valdez, J.A., Chodak, P. III, Nastasi, M., Verrall, R.A., J. Nucl. Mater., 274, 66 (1999).Google Scholar
[20] Gibbons, J.F., Proc. IEEE, 60, 1062 (1972).Google Scholar
[21] Saudé, S., Grynszpan, R.I., Anwand, W., Brauer, G., Grob, J.J., Le Gall, Y., Nucl. Instr. Meth. B 216, 156 (2004).Google Scholar
[22] Fleischer, E.L., Norton, M.G., Zaleski, M.A., Hertl, W., Carter, C.B., Mayer, J.W., J. Mater. Res. 6(9), 1905 (1991).Google Scholar
[23] Falub, C.V., Eijt, S.W.H., van Veen, A., Mijnarends, P.E., Schut, H., Mater. Sci. Forum, 363, 561 (2001).Google Scholar
[24] Asoka-Kumar, P., Alatalo, M., Ghosh, V J, Kruserman, A.C., Nielsn, B., Lynn, K.G., Phys. Rev. Lett. 77, 2097 (1996).Google Scholar
[25] Saudé, S., Grynszpan, R.I., Anwand, W., Brauer, G., J. Alloys and Comp. 382, 252 (2004).Google Scholar
[26] Hakvoort, R. A., van Veen, A., Mijnarends, P.E., Schut, H., Appl. Surf. Sci. 85, 271 (1995).Google Scholar