Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-13T15:19:28.675Z Has data issue: false hasContentIssue false

The Potential of Binary Lithium Magnesium Nitride - LiMgN for Hydrogen Storage Application

Published online by Cambridge University Press:  01 February 2011

Jun Lu
Affiliation:
jun.lu@utah.edu, University of Utah, Metallurgical Engineering, 135 South 1460 East Room 412, Salt Lake City UT 84112, USA, Salt Lake City, UT, 84112, United States, 001-801-581-3963, 001-801-581-4937
Zhigang Zak Fang
Affiliation:
zak.fang@utah.edu, University of Utah, Metallurgical Engineering, 135 South 1460 East Room 412, Salt Lake City, UT, 84112, United States
Young Joon Choi
Affiliation:
YoungJoon.Choi@utah.edu, University of Utah, Metallurgical Engineering, 135 South 1460 East Room 412, Salt Lake City, UT, 84112, United States
Hong Yong Sohn
Affiliation:
H.Y.Sohn@utah.edu, University of Utah, Metallurgical Engineering, 135 South 1460 East Room 412, Salt Lake City, UT, 84112, United States
Get access

Abstract

Metal hydrides and amides are potential candidate materials for hydrogen storage. Lithium- and magnesium-based material systems are among the most promising materials owing to their high hydrogen contents. In the present work, we investigated hydrogenation/dehydrogenation reactions of a binary nitride, LiMgN. LiMgN can be formed by a reaction of MgH2 with LiNH2 in 1:1 ratio. The reaction also releases approximately ∼ 8.1 wt% H2 (theoretical value is 8.2 wt%) between 160 and 220 °C. The reaction product LiMgN can be rehydrogenated by reacting with H2 under 2000 psi of hydrogen pressure and 160 °C with small amount of TiCl3 doping. TGA results showed that about 8.0 wt% of hydrogen was stored in TiCl3-doped LiMgN during the hydrogenation process. The reversible hydrogenation and dehydrogenation mechanisms involving LiMgN and H2 are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Bogdanovic, B.; Schwickardi, M. J. Alloys Compd. 1997, 253, 1.Google Scholar
2) Balema, V. P; Dennis, K. W; Pecharsky, V. K Chem. Commun. 2000, 17, 1665.Google Scholar
3) Chen, J.; Kuriyama, N.; Xu, Q.; Takeshita, H. T; Sakai, T. J. Phys. Chem. B 2001, 105, 11214.Google Scholar
4) Wang, J.; Ebner, A.D; Ritter, J.A; J. Am. Chem. Soc. 2006, 128, 5949.Google Scholar
5) Zidan, R. A.; Taraka, S.; Hee, A. G; Jensen, C. M J. Alloys Compd., 1999, 285, 119.Google Scholar
6) Jensen, C. M; Gross, K. J Appl. Phys. A 2001, 72, 213.Google Scholar
7) Sandrock, G.; Gross, K. J; Thomas, G. J. Alloys Compd. 2002, 339, 299.Google Scholar
8) Sun, D. L; Kiyobayashi, T.; Takeshite, H. T; Kuriyama, N.; Jensen, C. M J. Alloys Compd. 2002, 337, 8.Google Scholar
9) Morioka, H.; Kakizaki, K.; Chung, S. C; Yamada, A. J. Alloys Compd. 2003, 353, 310.Google Scholar
10) Fichtner, M.; Fuhr, O.; Kircher, O. J. Alloys Compd. 2003, 356, 418.Google Scholar
11) Vajo, J.J; Skeith, S.L; Mertens, F. J. Phys. Chem. B 2005, 109, 3719.Google Scholar
12) Aoki, M.; Miwa, K.; Noritake, T.; Kitahara, G.; Nakamori, Y.; Orimo, S.; Towata, S. Appl. Phys. A 2005, 80, 1409.Google Scholar
13) Miwa, K.; Ohba, N.; Towata, S. Phys. Rew. B 2004, 69, 245120.Google Scholar
14) Orimo, S.; Nakamori, Y.; Züttel, A. Mater. Sci. Eng. B 2004, 108, 51.Google Scholar
15) Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L Nature 2002, 420, 302.Google Scholar
16) Chen, P.; Xiong, Z.; Luo, J.; Lin, J.; Tan, K. L J. Phys. Chem. B, 2003, 107, 10967.Google Scholar
17) Lu, J.; Fang, Z.Z J. Phys. Chem. B 2005, 109, 20830.Google Scholar
18) Lu, J.; Fang, Z.Z; Sohn, H.Y J. Phys. Chem. B 2006, 110, 14236.10.1021/jp061764pGoogle Scholar
19) Lu, J.; Fang, Z.Z; Sohn, H.Y Inorg. Chem. 2006, 45, 8749.Google Scholar
20) Luo, W. J. Alloys Compd. 2004, 381, 284.Google Scholar
21) Luo, W.; Sickafoose, Q. J. Alloys Compd. 2006, 407, 274.Google Scholar
22) Xiong, Z.; Hu, J.; Wu, G.; Chen, P.; Luo, W.; Gross, K. and Wang, J. J. Alloys Compd. 2005, 398, 235.Google Scholar
23) Xiong, Z.; Wu, G.; Hu, J. and Chen, P. Adv. Mater. 2004, 16, 1522.Google Scholar
24) Leng, H. Y.; Ichikawa, T.; Hino, S.; Hanada, N.; Isobe, S.; and Fujii, H. J. Phys. Chem. B, 2004, 108, 8763.Google Scholar
25) Nakamori, Y.; Kitahara, G.; Miwa, K.; Ohba, N.; Noritake, T.; Towata, S.; Orimo, S. J. Alloys Compd. 2005, 404–406, 140.Google Scholar
26) Ichikawa, T.; Tokoyoda, K.; Leng, H.Y; Fujii, H. J. Alloys Compd. 2005, 400, 245.Google Scholar
27) Magyari-Kope, B.; Ozolins, V.; and Wolverton, C. Phys. Rev. B 2006 73, 220101.10.1103/PhysRevB.73.220101Google Scholar
28) Grochala, W.; Edwards, P. Chem. Rev., 2004, 104, 1283.10.1021/cr030691sGoogle Scholar
29) Alapati, S.V; Johnson, K.J; Sholl, D.S J. Phys. Chem. B 2006, 110, 8769.10.1021/jp060482mGoogle Scholar
30) Alapati, S.V; Johnson, K.J; Sholl, D.S Phys. Chem. Chem. Phys. 2007, 9 1438.Google Scholar
31) Hu, Y. H; Ruckenstein, E. J. Phys. Chem. A 2003, 107, 9717.Google Scholar
32) Xiong, Z.; Wu, G.; Hu, J.; Liu, Y.; Chen, P.; Luo, W.; Wang, J. Adv. Funct. Mater., 2007, 17, 1137.Google Scholar
33) Rijssenbeek, J.; Gao, Y.; Hanson, J.; Huang, Q.; Jones, C.; Toby, B. J. Alloys Compd. 2008, 454, 233.Google Scholar
34) Isobe, S.; Ichikawa, T.; Hanada, N.; Leng, H.Y; Fichtner, M.; Fuhr, O.; Fujii, H. J. Alloys Compd. 2005, 404–406, 439.Google Scholar
35) Kojima, Y.; Kawai, Y. J. Alloys Compd. 2005, 395, 236.Google Scholar
36) Linda, G.; Juza, R.; Zeitschrift fur Anorganische und Allgemeine Chemie 1974, 409, 199.Google Scholar
37) Bohger, J.P.O.; Essmann, R.R; Jacobs, H.; J. Mol. Struct. 1995, 348, 325.10.1016/0022-2860(95)08654-EGoogle Scholar