Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-01T03:41:05.798Z Has data issue: false hasContentIssue false

Preferential Oxygen Transport in Nanophase Mesoporous Ceramic Ion Conducting Membranes

Published online by Cambridge University Press:  11 February 2011

C. Guizard
Affiliation:
Institut Européen des Membranes (CNRS UMR 5635) UM II - CC 047, Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
C. Levy
Affiliation:
Institut Européen des Membranes (CNRS UMR 5635) UM II - CC 047, Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
L. Dalmazio
Affiliation:
Institut Européen des Membranes (CNRS UMR 5635) UM II - CC 047, Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
A. Julbe
Affiliation:
Institut Européen des Membranes (CNRS UMR 5635) UM II - CC 047, Place Eugène Bataillon, 34095 Montpellier cedex 5, France.
Get access

Abstract

Recent data from the literature dealing with the influence on oxygen transport of porous nanophase ion conducting ceramics are reviewed, and then transposed to the design of mesoporous nanophase ceria-based membranes. Mesoporous CeO2/Al2O3 and Gd doped CeO2 membranes containing Pd and Pt nanoparticles were prepared using the sol-gel process. Permeation of N2 and O2 single gases was studied in a temperature range 20–500°C. Permeation measurements indicate an activated oxygen transport in agreement with the literature data. A synergetic effect of the noble metal nanoparticles on oxygen transport has been evidenced, in relation with the triple phase boundary concept. However, these membranes do not perform totally the preferential oxygen transport predicted by the theory. Several directions are proposed for membrane improvement, in particular concerning pore and grain optimal sizes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tuller, H.L., Solid State Ionics, 131, 143 (2000).Google Scholar
2. Schoonman, J., Nanoionics, Solid State Ionics (2002).Google Scholar
3. Kharton, V.V., Marques, F.M.B., Cur. Opin. in Solid State and Materials Sci., (2002) (in press).Google Scholar
4. Tschöpe, A., Esommer, , Birringer, R., Solid State Ionics, 139, 255 (2001).Google Scholar
5. Tschöpe, A., Solid State Ionics, 139, 267 (2001).Google Scholar
6. Tschöpe, A., Ying, J.Y., Tuller, H., Sensors and Actuators, B31, 111 (1996).Google Scholar
7. Chiang, Y.-M, Lavik, E.B., Kosacki, I., Tuller, H.L., Ying, J.Y.,, J. of Electroce., 1:1, 7 (1997).Google Scholar
8. Atkinson, , Monty, C., “Surfaces and Interface of Ceramic Materials“, ed. Dufour, L.C., (Kluer Academic, 1989) p. 273.Google Scholar
9. Boaro, M., Trovarelli, A., Hwang, J.-A., Mason, T.O., Solid State Ionics, 147, 85 (2002).Google Scholar
10. Deng, H., Zhou, M., Abeles, B., Solid State Ionics, 74, 75 (1994).Google Scholar
11. Deng, H., Zhou, M., Abeles, B., Solid State Ionics, 80, 213, (1995).Google Scholar
12. Julbe, A., Farrusseng, D., Guizard, C., J. Membrane Science, 181, 3, (2001).Google Scholar
13. Duprez, D., Stud. Surf. Sci. Catal., 112, 13 (1997).Google Scholar
14. Duprez, D., Colin, M. and Pélissier, M., Stud. Surf. Sci. Catal., 112, 303 (1997).Google Scholar
15. Martin, D. and Duprez, D., J. Phys. Chem., 101, 4428 (1997).Google Scholar
16. Agrafiotis, A., Tsetsekou, A., Stournaras, C., Julbe, A., Dalmazio, L., Guizard, C., Parussa, F., De Benedetti, M., Applied Catalysis B: Environmental, 890, 1 (2001).Google Scholar
17. Agrafiotis, A., Tsetsekou, A., Stournaras, C. J., Julbe, A., Dalmazio, L., Guizard, C., J. European Ceramic Society, 22–1, 15 (2002).Google Scholar
18. McBride, J. R., Hass, K. C., Poindexter, B. D. and Weber, W. H., J. Appl. Phys., 76 (4), 2435 (1994).Google Scholar
19. Burggraaf, A.J., Transport and separation properties of membranes with gases and vapours, “Fundamentals of Inorganic Membrane Science and Technology“, ed. Burggraf, A.J. and Cot, L. (Elsevier Science B.V., 1996), p. 331.Google Scholar