Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T05:32:33.383Z Has data issue: false hasContentIssue false

Preparation and Characterization of MFM and MFIS Structures Using Sr2(Ta1划x, Nbx)2O7 Thin Film by Pulsed Laser Deposition

Published online by Cambridge University Press:  21 March 2011

Masanori Okuyama
Affiliation:
Area of Materials and Device Physics, Department of Physical Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan
Toshiyuki Nakaiso
Affiliation:
Area of Materials and Device Physics, Department of Physical Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan
Minoru Noda
Affiliation:
Area of Materials and Device Physics, Department of Physical Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-Cho, Toyonaka, Osaka 560-8531, Japan
Get access

Abstract

Sr2(Ta1划x, Nbx)2O7(STN) ferroelectric thin films have been prepared on SiO2/Si(100) substrates by the pulsed laser deposition (PLD) method. Preferential (110) and (151)-oriented STN thin films are deposited at a low temperature of 600°C in N2O ambient gas at 0.08 Torr. A counterclockwise C-V hysteresis was observed in the metal-ferroelectric-insulator-semiconductor (MFIS) structure using Sr2(Ta0.7, Nb0.3)2O7 on SiO2/Si deposited at 600°C. Memory window in the C-V curve spreads symmetrically towards both positive and negative directions when applied voltage increases and the window does not change in sweep rates ranging from 0.1 to 4.0×103 V/s. The C-V curve of the MFIS structure does not degrade after 1010 cycles of polarization reversal. The gate retention time is about 3.0×103 sec when the voltages and time of write pulse are ±15V and 1.0 sec, respectively, and hold bias was -0.5 V.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Higuma, Y., Matsui, Y., Okuyama, M., Nakagawa, T. and Hamakawa, Y.: Jpn. J. Appl. Phys. Suppl. 17–1 (1978) 209.10.7567/JJAPS.17S1.209Google Scholar
2) Hirai, T., Goto, T., Teramoto, K., Nishi, T. and Tarui, Y.: Jpn.J.Appl.Phys. 33 (1994) 5219.10.1143/JJAP.33.5219Google Scholar
3) Sugiyama, H., Nakaiso, T., Adachi, Y., Noda, M. and Okuyama, M.: Jpn.J.Appl.Phys. 39 (2000) 2131.10.1143/JJAP.39.2131Google Scholar
4) Nakamatsu, S., Kimura, M. and Kawamura, T.: J.Phys.Soc.Jpn. 38 (1975) 819.Google Scholar
5) Tokumitsu, E., Fujii, G. and Ishiwara, H.: Appl.Phys.Lett. 75 (1999) 575.10.1063/1.124446Google Scholar
6) Xiong, S. B. and Sakai, S.: Appl.Phys.Lett. 75 (1999) 1613.10.1063/1.124771Google Scholar
7) Kijima, T. and Matsunaga, H.: Jpn.J.Appl.Phys. 38 (1999) 2281.10.1143/JJAP.38.2281Google Scholar
8) Fujimori, Y., Izumi, N., Nakamura, T. and Kamisawa, A.: Jpn.J.Appl.Phys. 37 (1998) 5207.10.1143/JJAP.37.5207Google Scholar
9) Fujimori, Y., T, Nakamura and Kamisawa, A.: Jpn.J.Appl.Phys. 38 (1999) 2285.10.1143/JJAP.38.2285Google Scholar
10) Son, C. H., Nam, H. D., Jang, S. W. and Lee, H. Y.: J.Kor.Phys.Soc. 32 (1998) 1434.Google Scholar
11) Shoyama, M., Tsuzuki, A., Kato, K. and Murayama, N.: Appl.Phys.Lett. 75 (1999) 561.10.1063/1.124422Google Scholar
12) Prasadarao, A. V., Selvaraj, U. and Komarneni, S.: J.Mater.Res. 10 (1995) 704.10.1557/JMR.1995.0704Google Scholar
13) Okuwada, K., Nakamura, S. and Nozawa, H.: J.Mater.Res. 14 (1999) 855.10.1557/JMR.1999.0114Google Scholar
14) Nakaiso, T., Sugiyama, H., Noda, M. and Okuyama, M.: Jpn.J.Appl.Phys. to be published.Google Scholar