Published online by Cambridge University Press: 11 February 2011
Nanocrystalline diamond thin films of sub-micron thickness have been covalently modified with DNA oligonucleotides. Quantitative studies of hybridization of surface-bound oligonucleotides with fluorescently tagged complementary and non-complementary oligonucleotides were performed. The results show no detectable nonspecific adsorption, with extremely good selectivity between matched and mismatched sequences. Impedance spectroscopy measurements were made of DNA-modified boron-doped nanocrystalline diamond films. The results show that exposure to non-complementary sequences induce only small changes in impedance, while complementary DNA sequences produce a pronounced decrease in impedance. The combination of high stability, selectivity, and the ability to directly detect DNA hybridization via electrical means suggest that diamond may be an ideal substrate for continuously-monitoring biological sensors.