Published online by Cambridge University Press: 10 February 2011
The chemical composition of ambient groundwater for a geological, high level radioactive waste repository is of crucial significance to issues such as radioelement solubility limits, sorption, corrosion of the overpack, behavior of compacted clay buffers, and many other factors involved in repository safety assessment. At this time, there are no candidate repository sites established in Japan for the geological disposal of high-level radioactive waste, and only generic rock formations are under consideration. It is important that a small, but representative set of groundwater types be identified so that defensible models and data for generic repository performance assessment can be established. Over 15,000 separate analyses of Japanese groundwaters have been compiled into a data set for the purpose of evaluating the range of geochemical conditions for waste repositories in Japan. This paper demonstrates the use of a multivariate statistical analysis technique, principal component analysis (PCA), to derive a set of statistically based, representative groundwater categories from the multiple chemical components and temperature that characterize the deep Japanese groundwater analyses. PCA also can be used to guide the selection of groundwaters that could be used in scenario analyses of future geological events in Japan.