Published online by Cambridge University Press: 26 February 2011
Two new Dion-Jacobson type layered perovskite solid solutions, RbCa2-xSrxM3O10 (M = Nb, Ta; 0 ≤ x ≤ 2), were prepared and studied by X-ray powder diffraction, neutron powder diffraction, and Raman spectroscopy. X-ray powder diffraction confirmed single-phase solid solution formation with continuous expansion of the idealized primitive tetragonal unit cell with increasing strontium content. Neutron powder diffraction studies of selected samples revealed lower symmetries and larger unit cells, as necessitated by octahedral tilting within the perovskite slabs, compared to the idealized primitive cell. As the average size of the A-cation in the perovskite slab is varied from Sr2+ to Ca2+, more extensive octahedral tilting is introduced. Vibrational modes of the perovskite slab observed using Raman spectroscopy show subtle changes as a function of calcium/strontium content and more intriguing differences between the isostructural niobates and tantalates.