Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T20:00:25.527Z Has data issue: false hasContentIssue false

Properties of Nano-crystalline Silicon-Carbide Films Prepared Using Modulated RF- PECVD

Published online by Cambridge University Press:  31 January 2011

Feng Zhu
Affiliation:
fzhu@mvsystemsinc.com, MVSystems, Inc., Golden, Colorado, United States
Jian Hu
Affiliation:
jhu@mvsystemsinc.com, MVSystems, Inc., Golden, Colorado, United States
Ilvydas Matulionis
Affiliation:
imatulionis@mvsystemsinc.com, MVSystems, Inc., Golden, Colorado, United States
Augusto Kunrath
Affiliation:
akunrath@mvsystemsinc.com, MVSystems, Inc., Golden, Colorado, United States
Arun Madan
Affiliation:
arunmadan@aol.com, MVSystems, Inc., Golden, Colorado, United States
Get access

Abstract

We report on the fabrication of nano-crystalline silicon-carbide (nc-SiC) using pulse modulated RF-PECVD technique, from silane (SiH4) and methane (CH4) gas mixtures which is highly diluted in hydrogen (H2). The microstructure of nc-SiC material is nanometer-size silicon crystallites embedded in amorphous silicon-carbide (a-SiC) matrix. As carbon incorporation in nc-Si film increases, the bandgap is enlarged from 1.1eV to 1.55eV as measured by Photothermal Deflection Spectroscopy (PDS) while the crystalline volume fraction decreases from 70% to about 20%. It is found that the crystalline volume fraction, grain size and dark conductivity of nc-SiC films can be enhanced with applying a negative DC bias to substrate during deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Staebler, D. L. and Wronski, C. R. Appl. Phys. Lett. 31, (1977) 292 Google Scholar
2 Carlson, D.E., Appl.Phys. A 41 (1986) 305309 Google Scholar
3 Yamamoto, K., Nakajima, A. Yoshimi, M. et al. , Solar Energy, 77, (2004)939 Google Scholar
4 Cubero, O. Söderström, T., Haug, F.J. et al. , Proceedings of the 23th EU-PVSEC Conference, Valencia, Spain (2008)Google Scholar
5 Shah, A., Meier, J., Vallat-Sauvain, E. et al. , Thin Solid Films, Vol. 403–404 (2002) 179187 Google Scholar
6 Baojie, Y. Yue, G. and Guha, S. Mat. Res. Soc. Proc., April (2007) A15.1 Google Scholar
7 Yang, J., Banerjee, A., and Guha, S., Appl. Phys. Lett. 70 (1997) 2975 Google Scholar
8 Yan, Baojie, Yue, Gouzhe, Yan, Yanfa et al. , Mat. Res. Soc. Proc. Vol. 1066 (2008) A03.03 Google Scholar
9 Meillaud, F., vallat-Sauvain, E., Shah, A. et al. , Appl. Phys. Lett., 103 (2008) 054504 Google Scholar
10 Wang, Yan, Han, Xiaoyan, Zhu, Feng et al. , J. Non-Crystal. 352 (2006) 19091912 Google Scholar
11 Yue, Guozhen, Yan, Baojie, Ganguly, Gautam et al. , Appl. Phys. Lett., 88, (2006) 263507 Google Scholar
12 Konagai, M. Miyajima, S. Yashiki, Y. Watahiki, T. K. L Narayanan and Yamada, A. Proc. 31 IEEE Photovoltaic Specialists Conference, (2005) 1424 Google Scholar
13 Morrison, Scott, Xi, Jianping, Madan, Arun, MRS proceedings, 507 (1998) 559 Google Scholar
14 Cullity, B.D., In Elements of X-Ray Diffraction, Addison-Wesley Publishing Company, Inc., (1978) 283300 Google Scholar
15 Smets, A. H. M. and Sanden, M. C. M. van de, Physical Review B 76 (2007) 073202 Google Scholar
16 Ambrosone, G. Coscia, U. Lettieri, S. et al. , Thin Solid Films 511–512 (2006) 280284 Google Scholar
17 Demichelis, F. Pirri, C.F. and Tresso, E. J.Appl.Phys. 72 (4) (1992) 1327 Google Scholar