Published online by Cambridge University Press: 10 February 2011
Molluscan shell is a composite made up of μm-sized CaCO3 crystals and an organic phase (matrix). This report outlines our studies on the structure and activities of matrix proteins isolated from the inner calcite layer of shell of the Eastern oyster, including their cellular origin and structure and their relationship to the crystalline mineral phase. In addition, we present results of the synthesis and commercialization of polypeptide polymers which are based on the structure and activities of the oyster proteins. Extracted shell proteins are polyanionic and range in size from relatively small soluble forms to those which are crosslinked and insoluble. The soluble forms are capable of adsorbing to calcite in vitro and in the process changing its growth habit and acting as threshold growth inhibitors. Their function in vivo is not understood, but they may serve to control shell crystal morphology. The insoluble protein forms gels readily and may serve to provide resiliency to the shell and, from in vitro and in situ observations, appears to serve as a site for nucleation of crystals. However, from studies in vitro, these gels do not lower the energy of activation for nucleation, as previously expected. Matrix protein aggregates are identifiable by AFM on the surface of crystals, but as such do not serve as nucleation sites for new crystal growth. If the aggregates are removed, then ectopic crystal growth proceeds readily revealing orientation of the underlying crystals. All the matrix proteins contain domains rich in aspartic acid, are heavily phosphorylated, crossreact in antibody studies and may belong to a limited number of gene families with individuals modified post-synthesis. The proteins are made by a specialized group of cells located primarily some distance from the growing edge of the shell and appear to be assembled into sheets soon after secretion. Soluble anti-scalants and crosslinked insoluble water absorbents have been developed based on the structure and activity of the matrix proteins. These are primarily poly(aspartates) which can be made in large scale via thermal polycondensation of aspartic acid. The soluble forms are commercially used as biodegradable water treatment chemicals among other applications.