Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T08:37:34.195Z Has data issue: false hasContentIssue false

Pulsed Laser Heating-induced Surface Rapid Cooling and Amorphization

Published online by Cambridge University Press:  01 February 2011

Longzhang Tian
Affiliation:
longztian@gmail.com, University of Nebraska-Lincoln, Department of Mechanical Engineering, 2265 Y St. Apt. 16, Lincoln, NE, 68503, United States, 402-202-1752
Xinwei Wang
Affiliation:
xwang3@iastate.edu, Iowa State University, Department of Mechanical Engineering, Ames, IA, 50011, United States
Get access

Abstract

In this work, hybrid atomistic-macroscale simulation is conducted to explore the crystallization process of Si surface in the situation of fast melting and solidification induced by ultrafast laser heating and heat conduction. Using the environment-dependent interatomic potential, samples containing 2,880 and 11,520 Si atoms are modeled to provide accurate details for the relationship between the finial crystal structure and the parameters of laser pulses. For different pulsed lasers, amorphous layers are found to form when the laser fluence exceeds a certain critical value. An empirical correlation Ec = 448.76 × (tg)0.56 is obtained to relate this critical fluence to the laser pulse width. It is found that the final thickness of amorphous layer is related to the fluence of the laser pulse with the same full width at half maximum (FWHM). Employing laser pulses with FWHM = 6.67 ns, the formation and recrystallization processes of a 12 nm thick amorphous layer is further investigated, which may have great potential in laser manufacture techniques for Si-associated structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Carlson, D. E. and Wronski, C.R. Appl. Phys. Lett. 28, 671673 (1976).Google Scholar
2. Nayak, B. K. Eaton, B. Selvan, J. A. A. Mcleskey, J. Gupta, M. C. Romero, R. and Ganguly, G. Appl. Phys. A 80, 1077 (2005).Google Scholar
3. Suzuki, T. and Adachi, S. Jpn. J. Appl. Phys. 32, 4900 (1993).Google Scholar
4. Im, J. S. and Kim, H. J. Appl. Phys. Lett. 63, 1969 (1993).Google Scholar
5. Miyasaka, M. and Stoemenos, J. J. Appl. Phys. 86, 5556 (1999).Google Scholar
6. Wang, Y. C., Shieh, J.M. Zan, H. W., and Pan, C.L., Opt. Express 15, 6982 (2007).Google Scholar
7. Cullis, A. G. Chew, N. G. Webber, H. C. and Smith, D. J. J. Cryst. Growth 68, 624 (1984).Google Scholar
8. Landman, U. Luedtke, W. D. Ribarsky, M. W. Barnett, R. N. and Cleveland, C. L. Phys. Rev. B 37, 4637 (1988).Google Scholar
9. Thompson, M. O. Mayer, J. W. Cullis, A. G. Webber, H. C. Chew, N. G. Poate, J. M. and Jacobson, D. C. Phys. Rev. Lett. 50, 896 (1983).Google Scholar
10. Stolk, P. A. Polman, A. and SInke, W. C. Phys. Rev. B 47, 5 (1993).Google Scholar
11. Polman, A. Stolk, P. A. Mous, D. J. W. SInke, W. C. Bulle-Lieuwma, C. W. T. and Vandenhoudt, D. E. W. J. Appl. Phys. 67, 4024 (1990).Google Scholar
12. Justo, J. F. Bazant, M. Z. Kaxiras, E. Bulatov, V. V. and Yip, S. Phys. Rev. B 58, 2539 (1998).Google Scholar
13. Bazant, M. Z. Kaxiras, E. and Justo, J. F., Phys. Rev. B 56, 8542 (1997).Google Scholar
14. Lide, D. R. CRC Handbook of Chemistry and Physics, 86th Edition, 12 (2005).Google Scholar
15. Wang, X., J. Phys.: D Applied Physics 38, 1805 (2005).Google Scholar
16. Wang, X. and Xu, X. ASME Journal of Heat Transfer 124, 265 (2002).Google Scholar
17. Wang, X. and Lu, Y. J. Appl. Phys. 98, 114304: 1-10 (2005).Google Scholar
18. Baeri, P. Foti, G. Poate, J. M. and Cullis, A. G. Phys. Rev. Lett. 45, 2036 (1980).Google Scholar
19. Fattakhov, Ya. V. Galyautdinov, M. F. L'vova, T. N. and Khaibullin, I. B. Tech. Phys. 42 (12), 1457 (1997).Google Scholar