No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
Laser crystallized amorphous silicon thin films on quartz exhibit a peak in the grain size, electron mobility and the Si (111) x-ray intensity as a function of the laser fluence, substrate temperature, film thickness, and the number of laser shots per unit area. The peak in grain size has also been shown to be dependent: on the stability of the pulse-to-pulse laser energy density, particularly at high shot densities. The shape of the distribution profile of the pulse-to-pulse laser fluence can significantly alter the grain growth at higher shot densities. The modified growth can be expressed by a simple model based on the mean and standard deviation of the laser energy density relative to the characteristic fluence at which the grain size, mobility, and Si (111) x-ray intensities are maximized.