Published online by Cambridge University Press: 28 February 2011
A pulsed, high-power TEA CO2 laser with lines in the region from 9.2 to 10.6 μm has been used to irradiate luminescent porous Si samples. The visible luminescence quenches and then recovers to its initial value on a time scale of one hour. It is found that the quenching is efficient when the IR wavelength is within the Si-O absorption band. We suggest that the resonant excitation of the Si-O bonds results in a metastable reconfiguration of the oxygen together with the creation of dangling bonds. These non-radiative centers are responsible for the PL quenching.