Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T23:14:48.290Z Has data issue: false hasContentIssue false

Raman Spectroscopy in Group IV Nanowires and Nanowire Axial Heterostructures

Published online by Cambridge University Press:  13 February 2014

J. Anaya
Affiliation:
Optronlab Group, Departamento de Física de la Materia Condensada, Centro I+D, Universidad de Valladolid, Paseo de Belén 1, 47011 Valladolid, Spain
A. Torres
Affiliation:
Optronlab Group, Departamento de Física de la Materia Condensada, Centro I+D, Universidad de Valladolid, Paseo de Belén 1, 47011 Valladolid, Spain
J. Jiménez
Affiliation:
Optronlab Group, Departamento de Física de la Materia Condensada, Centro I+D, Universidad de Valladolid, Paseo de Belén 1, 47011 Valladolid, Spain
A. Rodríguez
Affiliation:
Departamento de Tecnología Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain
T. Rodríguez
Affiliation:
Departamento de Tecnología Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain
C. Ballesteros
Affiliation:
Departamento de Física, E.P.S., Universidad Carlos III, 28911 Leganés (Madrid), Spain
Get access

Abstract

The control of the SiGe NW composition is fundamental for the fabrication of high quality heterostructures. Raman spectroscopy has been used to analyse the composition of SiGe alloys. We present a study of the Raman spectrum of SiGe nanowires and SiGe/Si heterostructures. The inhomogeneity of the Ge composition deduced from the Raman spectrum is explained by the existence of a Ge-rich outer shell and by the interaction of the NW with the electromagnetic field associated with the laser beam.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Li, J., Yu, H.Y., Wong, S. M., Li, X., Zhang, G., Lo, P. G.-Q., Kwong, D.-L.; Appl. Phys. Lett. 95, 243113 (2009).CrossRefGoogle Scholar
Pichanusakorn, P., Bandaru, P.; Mater. Sc. Eng. R 67, 19 (2010).CrossRefGoogle Scholar
Kempa, T. J., Cahoon, J. F., Kim, S. K., Day, R. W., Bell, D. C., Park, H. G., Lieber, C. M.; PNAS 109, 1407 (2012).CrossRefGoogle Scholar
Clark, T. E., Nimmatoori, P., Lew, K. K., Pan, L., Redwing, J. M., Dickey, E. C., Nano Lett. 8, 1246 (2008).CrossRefGoogle Scholar
Pezzolli, F., Martinelli, L., Grilli, E., Guzzi, M., Sanguinetti, S., Bollani, M., Chrastina, H. D., Isella, G., von Kanel, H., Winsterberger, E., Stangl, J., Bauer, G.; Mater. Sci. Eng. B 124, 127 (2005).CrossRefGoogle Scholar
Lu, Q., Adu, K. W., Gutiérrez, H. R., Chen, G., Lew, K-K., Nimmatoori, P., Zhang, X., Dickey, E. C., Redwing, J. M., Eklund, P. C. ; J. Phys. Chem. C112, 3209 (2008)Google Scholar
Rodríguez, A., Rodríguez, T., Ballesteros, C., Jiménez, J.; Mat. Res. Soc. Symp. Proc. 1510, DD06–05 (2013).CrossRefGoogle Scholar
Anaya, J., Torres, A., Prieto, A. C., Hortelano, V., Jiménez, J., Rodríguez, A., Rodríguez, T.; Appl. Phys. A, DOI:10.1007/S00339-013-7966y (2013).Google Scholar
Nishimura, C., Imamura, G., Fujii, M., Kawashima, T., Saitoh, T., Hayashi, S.; Appl. Phys.Lett. 93, 203101 (2008).CrossRefGoogle Scholar
Cao, L., White, J. S., Park, J. S., Schuller, J. A., Clemens, B., Brongersma, M. L.; Nature Mater. 8, 643 (2009).CrossRefGoogle Scholar
Anaya, J., Torres, A., Martín-Martín, A., Souto, J., Jiménez, J., Rodríguez, A., Rodríguez, T.; Appl. Phys. A 113, 167 (2013).CrossRefGoogle Scholar