Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T07:08:08.861Z Has data issue: false hasContentIssue false

Rapid Thermal Chemical Vapor Deposition of Germanium and Germanium/Silicon Alloys on Silicon: New Applications in the Fabrication of MOS Transistors

Published online by Cambridge University Press:  28 February 2011

M. C. Öztürk
Affiliation:
North Carolina State UniversityDepartment of Electrical and Computer EngineeringBox 7911, Raleigh, NC 27695-7911
D. T. Grider
Affiliation:
North Carolina State UniversityDepartment of Electrical and Computer EngineeringBox 7911, Raleigh, NC 27695-7911
S. P. Ashburn
Affiliation:
North Carolina State UniversityDepartment of Electrical and Computer EngineeringBox 7911, Raleigh, NC 27695-7911
M. Sanganeria
Affiliation:
North Carolina State UniversityDepartment of Electrical and Computer EngineeringBox 7911, Raleigh, NC 27695-7911
J. J. Wortman
Affiliation:
North Carolina State UniversityDepartment of Electrical and Computer EngineeringBox 7911, Raleigh, NC 27695-7911
Get access

Abstract

In this work, low pressure chemical vapor deposition (LPCVD) of pure Ge and SixGe1-x on Si and SiO2 has been considered for new applications in future ultra large scale integration (ULSI) technologies. Depositions were performed in a lamp heated cold-wall rapid thermal processor (rapid thermal chemical vapor deposition -RTCVD) using thermal decomposition of GeH4 and SiH2Cl2 in a carrier gas of H2. It is shown that RTCVD of Ge on Si is highly selective with no deposition occuring on SiO2. The selectivity of Ge/Si depends on the amount of germane in the gas phase. The processes are relatively low temperature/high throughput processes suitable to single wafer manufacturing. In this paper, we review potential applications of Ge and SixGe1−x in future MOS processes. Specifically, Ge and SixGe1−x have been considered for three new applications: i) fabrication of raised source/drain structures where selective Ge or SixGe1−x is used as a sacrificial layer to eliminate silicon consumption during silicide formation (by forming a germanide), ii) Formation of ultra-shallow junctions in silicon using selectively deposited and implanted polycrystalline SixGe1−x as a diffusion source, iii) Formation of MOS gate structures with SixGe1−x gate electrodes for lower dopant activation temperatures and better threshold control.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Singh, R., Journal of Applied Physics, vol. 63, p. R59, 1988.Google Scholar
2. Daembkes, H., Herzog, H., Jorke, H., Kibbel, H., and Kaspar, E., IEEE Transactions on Electron Devices, vol. ED–33, p. 633, 1986.CrossRefGoogle Scholar
3. Taylor, G. W. and Simmons, J. G., IEEE Transactions on Electron Devices, vol. ED–32, p. 2345, 1985.Google Scholar
4. Iyer, S. S., Patton, G. L., Stork, J. M. C., Meyerson, B. S., and Harame, D. L., IEEE Transactions on Electron Devices, vol. 36, p. 2043, 1989.Google Scholar
5. Öztürk, M. C., Grider, D. T., Wortman, J. J., Littlejohn, M. A., and Zhong, Y., Jourmal of Electronic Materials, vol. 19, p. 1129, 1990.CrossRefGoogle Scholar
6. Grider, D. T., Öztürk, M. C., Wortman, J. J., Zhong, Y., and Littlejohn, M. A., vol. 1393, p. 229, 1990.Google Scholar
7. Öztürk, M. C., Zhong, Y., Grider, D. T., Sanganeria, M., Wortman, J. J., and Littlejohn, M. A., vol. 1393, p. 260, 1990.Google Scholar
8. Grider, D. T., Öztürk, M. C., and Wortman, J. J., vol. 91, p. 458, 1991.Google Scholar
9. King, T. J., Pfiester, J. R., Shott, J. D., McVittie, J. P., and Saraswat, K. C., in Proceedings of IEDM, p. 253, 1990 Google Scholar
10. Grider, D. T., Öztürk, M. C., Wortman, J. J., Littlejohn, M. A., Zhong, Y., Bathchelor, D., and Russell, P., in Proceedings of Materials Research Society, p. 1989 Google Scholar
11. Zhong, Y., Öztürk, M.C., Grider, D.T., Wortman, J.J.,and M.A. Littlejohn,vol.57, p.2092, 1990.Google Scholar
12. Sze, S. M., VLSI technolgy. New York: McGraw-Hill Book Company, 1988 Google Scholar
13. Bean, J. C., Sheng, T. T., Feldman, L. C., Fiory, A. T., and Lynch, R. T., Applied Physics Letters, vol. 44, p. 102, 1984.Google Scholar
14. Sanganeria, M., Öztürk, M. C., Maher, D. M., Wortman, J. J., Batchelor, D., Zhang, B., and Zhong, Y. L., vol. 91, p. 528, 1991.Google Scholar
15. Murarka, S. P., Reed, M. H., Doherty, C. J., and Fraser, D. B., vol. 129, p. 293, 1982.CrossRefGoogle Scholar
16. Osbum, C. M., Journal of Electronic Materials, vol. 19, p. 67, 1990.Google Scholar
17. VanDenHove, L., Ph.D. Thesis, 1988, Katholieke Universiteit Leuven:Google Scholar
18. Thomas, O., d'Heurle, F. M., and Delage, S., vol. 5, p. 1453, 1990.Google Scholar
19. Kermani, A., Famam, K., and Stultz, T., in Proceedings of MRS, p. 665, 1987 Google Scholar
20. Öztürk, M. C., Wortman, J. J., Osburn, C. M., Ajmera, A., Rozgonyi, G. A., Frey, E., Chu, W. K., and Lee, C., IEEE Transactions on Electron Devices, vol. 35, p. 659, 1988.Google Scholar
21. Hill, C. and Jones, S. K., MRS Symposia Proceedings, p. 129, 1990 Google Scholar
22. Park, K., Batra, S., Banerjee, S., and Lux, G., MRS Symposia Proceedings, p. 159, 1990 Google Scholar
23. Cams, T.K., Rhee, S.S., Chang, G.K.,and Wang, K.L., Proceedings of Techcon'90, p.297, 1990 Google Scholar
24. Öztürk, M. C., Wortman, J.J., and Fair, R.B., Applied Physics Letters, vol. 52, p. 963, 1988.Google Scholar
25. Ren, X., Öztürk, M. C., Wortman, J. J., Blat, C., and Niccolian, E., vol. 20, p. 251, 1991.Google Scholar