Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T07:17:00.725Z Has data issue: false hasContentIssue false

Real-time x-ray scattering study of sputter-deposited LaNiO3 thin films on Si substrates

Published online by Cambridge University Press:  10 February 2011

Hsin-Yi Lee
Affiliation:
Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan, Republic of China
Chih-Hao Lee
Affiliation:
Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of China
Keng S. Liang
Affiliation:
Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan, Republic of China
Tai-Bor Wu
Affiliation:
Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30043, Taiwan, Republic of China
Get access

Abstract

Real-time x-ray reflectivity and diffraction measurements under in-situ sputtering deposition conditions were performed to study the crystallization behavior of LaNiO3thin films on Si substrate. We found that an amorphous layer of 60 Å was grown in the first 6 min of the deposition and subsequently a polycrystalline overlayer was developed as observed from the in-situ x-ray reflectivity curves and diffraction patterns. Polycrystalline columnar textures of (110) and (100) were grown on the top of this amorphous film. By comparing the integrated intensities of two Bragg peaks in the plane normal of x-ray diffraction, it was found that the ability of (100)-texturization enhanced with increasing film thickness over a certain critical value.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Heartling, G. H., J. Vac. Sci. Technol. A9, 414 (1991).10.1116/1.577424Google Scholar
2 Sayer, M. and Sreenivas, K., Science 247, 105 (1990).10.1126/science.247.4946.1056Google Scholar
3 Sheppard, L. M., Cerarn. Bull. 71, 85 (1992).Google Scholar
4 Larsen, P. K., Cuppens, R. and Spierings, G. A. C. M., Ferroelectrics 128, 265 (1992).10.1080/00150199208015102Google Scholar
5 Bruchhaus, R., Pitzer, D., Eibl, O., Scheithauer, V., and Hoesler, W., Mater. Res. Soc. Symp. Proc. 243, 123 (1992).10.1557/PROC-243-123Google Scholar
6 Jiang, M. C. and Wu, T. B., J. Mater. Res. 9,1879 (1994).10.1557/JMR.1994.1879Google Scholar
7 Scott, J. F. and Araujo, C. A. Paz de, Science 246, 1400 (1989).10.1126/science.246.4936.1400Google Scholar
8 Eom, C. B., Dover, R. B. V., Phillips, J. M., Fleming, R. M., Cava, R. J., Marshall, J. H., Werder, D. J., Chen, C. H., and Fork, D. K.: Ferroelectric Thin Films III, eds. Mayers, E. R., Tuttle, B. A., Desu, S. B., and Larsen, P. K., Mater. Res. Soc. Symp. Proc. 310, 145 (1993).10.1557/PROC-310-145Google Scholar
9 Vijat, D. P. and Desu, S. B., J. Electrochem. Soc. 140, 2640 (1993).Google Scholar
10 Nakamuna, T., Nakao, Y., Kamisawa, A., and Takasu, H., Jpn. J. Appl. Phys. 33, 5207 (1994).10.1143/JJAP.33.5207Google Scholar
11 Ramesh, R., Chan, W. K., Wilkens, B., Gilchrist, H., Sands, T., Tarascon, J. M., Keramidas, V. G., Fork, D. K., Lee, J., and Safari, A., Appl. Phys. Lett. 61, 1537 (1992).10.1063/1.107488Google Scholar
12 Rajeex, K. P., Shivakuma, G. V., and Raychaudhmi, A. K., Solid State Commun. 79, 591 (1991).Google Scholar
13 Satyakahmi, K. M., Mallya, R. M., Ramanathan, K. V., Wu, X. D., Brainard, B., Gautier, D. C., Vasanthacharya, N. Y., and Hegde, M. S., Appl. Phys. Lett. 62, 1233 (1993).Google Scholar
14 Ichinose, H., Nagano, M., Katsuki, H., and Takag, H., J. Mater. Sci. 29, 5115 (1994).10.1007/BF01151105Google Scholar
15 Wold, A., Post, B., and Banks, E., J. Am. Chem. Soc. 70, 4911 (1957).10.1021/ja01575a022Google Scholar
16 Obayashi, H. and Kudo, T., Jpn. J. Appl. Phys. 14, 330 (1975).10.1143/JJAP.14.330Google Scholar
17 Yang, C. C., Chen, M. S., Hong, T. J., Wu, C. M., Wu, J. M., and Wu, T. B., Appl. Phys. Lett. 66, 2643 (1995).10.1063/1.113111Google Scholar
18 Lee, Hsin-Yi, Wu, Tai-Bor, and Lee, Jyh-Fu, J. Appl. Phys. 80 (4), 21752180 (1996).10.1063/1.363109Google Scholar
19 Shyu, M. J., Hong, T. J., nd Wu, T. B., Jpn. J. Appl. Phys. 34, 3647 (1995).10.1143/JJAP.34.3647Google Scholar
20 Chen, M. S., Wu, J. M., and Wu, T. B., Jpn. J. App. Phys. 34, 4870 (1995).10.1143/JJAP.34.4870Google Scholar
21 Chen, M. S., Wu, T. B., and Wu, J. M., J. Appl. Phys. 68, 1430 (1996).Google Scholar
22 Wu, T. B., Hong, T. J., and Jiang, M. C., Mater. Chem. Phys. 36, 337 (1994).10.1016/0254-0584(94)90051-5Google Scholar
23 Lee, Hsin-Yi and Wu, Tai-Bor, J. Mater. Res. 12 (11), 3165 (1997).10.1557/JMR.1997.0413Google Scholar
24 Liu, Y. W., Thesis, M.S. (in Chinese), National Tsing Hua University, 1996.Google Scholar
25 Je, J. H., Noh, D. Y., Kim, H. K., and Liang, K. S., J. Appl. Phys. 81, 6126 (1997).10.1063/1.364394Google Scholar
26 JCPDS 33-710, Wustenberg, H., Hahn, Inst. fur Kristallogr., Techische Hochule, Aachen, Germany, JCPDS Grant-in-Report, 1981.Google Scholar
27 Oh, U. C. and Je, J. H., J. Appl. Phys. 74, 1692 (1993).10.1063/1.355297Google Scholar
28 Tseng, T. F., Yang, C. C., Liu, K. S., Wu, J. M., Wu, T. B., and Lin, I. N., Jpn. J. Appl. Phys. 35, 4743 (1996).10.1143/JJAP.35.4743Google Scholar