No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
Direct electrochemical reduction of porous SiO2 pellets in molten CaCl2 salt and CaCl2-NaCl salt mixture were investigated by applying 2.8 V potential. The study focused on the effects of temperature, powder size and cathode contacting materials. Starting materials and electrolysis products were characterized by X-ray diffraction analysis and scanning electron microscopy. Due to reactive nature of silicon, different cathode contacting materials were used to test the extent of reactions between silicon produced at the cathode and the contacting materials. X-ray diffraction patterns showed that silicon produced at the cathode reacted with nickel, and iron in stainless steel to form Ni-Si and Fe-Si compounds respectively. Besides, studies revealed that higher temperature and smaller particle size had positive effects in increasing reduction rate. The results were interpreted from variation of current versus time graphs under different conditions, microstructures and compositions of the reduced pellets.