Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-13T03:04:00.514Z Has data issue: false hasContentIssue false

Residual Damage in Heavily Germanium-Doped Silicon

Published online by Cambridge University Press:  25 February 2011

Esin Demirlioğlu
Affiliation:
National Semiconductor Corporation, Santa Clara, CA 95052
Sheldon Aronowitz
Affiliation:
National Semiconductor Corporation, Santa Clara, CA 95052
David Su
Affiliation:
Materials Analysis Group, Signetics Corporation, Sunnyvale, CA 94088
Get access

Abstract

Cross-sectional transmission electron microscopy (XTEM) studies have shown that two distinct damage regions are created when germanium is implanted into single-crystal silicon in high doses and subsequently annealed at high temperatures. The first layer extends approximately 90–95 nm into silicon for an implant energy of 120 keV. The second region is an end-of-range damage region located 200 nm from the silicon surface for the same implantation energy. Neither low-dose, low-energy boron implantation nor the type of cap layers used during annealing alter the damage pattern. Although the dose of the Ge implants is the major factor in the formation of the continuous damage layer, high oxygen concentration at the surface may also contribute to this effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seidel, T. E., Knoell, R., Stevie, F. A., Poli, G. and Schwartz, B. J. Electrochem. Soc. Proc, 84–7, 201 (1984).Google Scholar
2. Sadana, D. K., Maszara, W., Wortman, J. J., Rozgonyi, G. A. and Chu, W. K. J. Electchem. Soc, 131, 943 (1984).CrossRefGoogle Scholar
3. Öztürk, M.C., Wortman, J. J., Osborn, C. M., Ajmera, A., Rozgonyi, G. A., Prey, E., Chu, W. K., and Lee, C., IEEE Trans. Elect. Dev., 35, 659 (1988).Google Scholar
4. Pfiester, J. R. and Alvis, J. R., IEEE Elect. Dev. Lett., 9, 391 (1988).Google Scholar
5. Aronowitz, S., J. Appl Phys., 68, 3293 (1990).Google Scholar
6. Aronowitz, S., Hart, C., Myers, S., and Hale, P., J. Electrochem. Soc., 138, 1802 (1991).Google Scholar
7. Jones, K. S., Prussin, S., and Venables, D., Mat. Res. Symp. Proc., 100, 277 (1988).Google Scholar
8. Aronowitz, S., Hart, C., and Myers, S., Mat. Res. Symp. Proc., 209, 481 (1991).Google Scholar
9. Im, S., Washburn, J., these Proceedings.Google Scholar
10. Olson, G. L., Mat. Res. Symp. Proc., 35, 25 (1985).CrossRefGoogle Scholar
11. Haynes, T. E., Lee, C. and Jones, K. S., these ProceedingsGoogle Scholar
12. Liliental-Weber, Z., Carpenter, R. W., and Kelly, J. C., Mat. Res. Symp. Proc., 52, 139 (1986).Google Scholar