Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T06:55:30.625Z Has data issue: false hasContentIssue false

The Role of Oxygen in Zone-Melting Recrystallization of Silicon-On-Insulator Films

Published online by Cambridge University Press:  22 February 2011

John C. C. Fan
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173–0073;
B-Y. Tsaur
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173–0073;
C. K. Chen
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02173–0073;
J. R. Dick
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
L. L. Kazmerski
Affiliation:
Solar Energy Research Institute, Golden, CO 80401
Get access

Abstract

Using secondary-ion mass spectroscopy, we have found that oxygen is strongly concentrated at the sub-boundaries in zone-melting-recrystallized silicon-on-insulator films prepared by the graphite-strip-heater technique. This observation suggests that the formation of sub-boundaries during recrystallization may be caused by constitutional supercooling resulting from the presence of oxygen that is dissolved into the molten Si zone from the adjacent SiO2 layers. Since all zone-melting-recrystallized films to date have been bordered by SiO2 layers, regardless of the heating techniques employed, the sub-boundaries almost always present in these films may well have dissolved oxygen as their common origin.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fan, J. C. C., Tsaur, B-Y. and Geis, M. W., in Technical Digest, 1980 International Electron Devices Meeting, Washington, DC, 1980 (IEEE, New York, 1980), p. 845.Google Scholar
2.Fan, J. C. C., Geis, M. W. and Tsaur, B-Y., Appl. Phys. Lett. 38, 365 (1981).Google Scholar
3.Tsaur, B-Y., Fan, J. C. C., Geis, M. W., Silversmith, D. J. and Mountain, R. W., Appl. Phys. Lett. 39, 561 (1981).Google Scholar
4.Geis, M. W., Smith, H. I., Tsaur, B-Y., Fan, J. C. C., Maby, E. W. and Antoniadis, D. A., Appl. Phys. Lett. 40, 158 (1982).Google Scholar
5.Fan, J. C. C., Tsaur, B-Y. and Geis, M. W., J. Cryst. Growth 63, 453 (1983);Google Scholar
5a. the SIMS results were obtained by Evans, C. & Associates, San Mateo, California.Google Scholar
6.Pinizzotto, R. F., Lam, H. W. and Vaandrager, B. L., Appl. Phys. Lett. 40, 388 (1982).Google Scholar
7. For example, Kamgar, A. and Labate, E., Mater. Lett. 1, 91 (1982).Google Scholar
8. For example, Gat, A., Gerzberg, L., Gibbons, J. F., Magee, T. J., Peng, J. and Hong, J. D., Appl. Phys. Lett. 33, 775 (1978).Google Scholar
9. For example, Knapp, J. A. and Picraux, S. T. in Laser-Solid Interactions and Transient Thermal Processing of Materials, eds. Narayan, J., Brown, W. L. and Lemons, R. A. (North Holland, New York, 1983), p. 557.Google Scholar
10.Tsaur, B-Y., Fan, J. C. C., Geis, M. W., Silversmith, D. J. and Mountain, R. W., IEEE Electron Device Lett. EDL–3, 79 (1982).Google Scholar
11.Leamy, H. J., Chang, C. C., Baumgart, H., Lemons, R. A. and Cheng, J., Mater. Lett. 1, 33 (1982).Google Scholar
12.Lee, E. H., late-news paper presented at 163rd Electrochemical Society Meeting, San Francisco, California, May 1983.Google Scholar
13. The recent SIMS results were obtained at Solar Energy Research Institute, Golden, Colorado.Google Scholar
14.Lin, W. and Hill, D. W., J. Appl. Phys. 54, 1082 (1983).Google Scholar
15.Carlberg, T., King, T. B. and Witt, A. F., J. Electrochem. Soc. 129, 189 (1982).Google Scholar
16. The equation for keff is given in Ref. 14. The thickness of the diffusion boundary layer for our ZMR-samples is estimated to be much larger than 50 μm, thus making keff close to one. We acknowledge private communications with Lin, W..Google Scholar
17. See, for example, Brice, J. C., The Growth of Crystals from Liquids (North-Holland Elsevier, New York, 1970),Google Scholar
17a. Chapter 3; or Wilcox, W. R., J. Cryst. Growth 7, 203 (1970).Google Scholar
18.Bardsley, W., Boulton, J. S. and Hurle, D. T. J., Solid-State Electron. 5, 395 (1962).Google Scholar
19.Geis, M. W., Smith, H. I., Tsaur, B-Y., Fan, J. C. C., Silversmith, D. J. and Mountain, R. W., J. Electrochem. Soc. 129, 2812 (1982).Google Scholar
20.Chen, C. K., Geis, M. W., Tsaur, B-Y., Chapman, R. L. and Fan, J. C. C., to be published in J. Electrochem. Soc.Google Scholar
21.Tsaur, B-Y., Fan, J. C. C., Geis, M. W., Silversmith, D. J. and Mountain, R. W., IEEE Electron Device Lett. EDL–3, 79 (1982).Google Scholar
22.Limanov, A. B. and Givargizov, E. I., Mater. Lett. 2, 93 (1983).Google Scholar
23.Celler, G. K., Robinson, McD. and Lischner, D. L., Appl. Phys. Lett. 42, 99 (1983).Google Scholar
24.Fan, J. C. C., Zeiger, H. J., Gale, R. P. and Chapman, R. L., Appl. Phys. Lett. 36, 158 (1980).Google Scholar
25.Zeiger, H. J., Fan, J. C. C., Palm, B. J., Chapman, R. L. and Gale, R. P., Phys. Rev. B 25, 4002 (1982).Google Scholar
26.Cline, H. E., J. Appl. Phys. 54, 2683 (1983).Google Scholar
27.Geis, M. W., Smith, H. I., Silversmith, D. J., Mountain, R. W. and Thompson, C. V., J. Electrochem. Soc. 130, 1178 (1983).Google Scholar
28.Geis, M. W., Smith, H. I., Tsaur, B-Y., Fan, J. C. C., Silversmith, D. J., Mountain, R. W. and Chapman, R. L. in Laser-Solid Interactions and Transient Thermal Processing of Materials, eds. Narayan, J., Brown, W. L. and Lemons, R. A. (North Holland, New York, 1983), p. 477.Google Scholar