No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
A molecular model is proposed for the dynamics of polymer chains in dilute polymer solutions containing well-dispersed spherical particles. In the presence of short range energetic affinity between the monomers and filler surface, the equilibrium structure of the adsorbed polymer layer is determined by a scaling theory. The viscoelastic response of the suspension is studied by a Maxwell model. It is shown that the solid-like properties of polymer nanocomposites in low frequency regimes could be attributed to the slowdown of the relaxation process of polymer chains. This process is controlled by the monomer-particle frictional interactions, density of the adsorbed polymer chains on the particles surface (controlled by monomer-particle adsorption energy), and volume fraction of the interfacial layer which can be enhanced by reduction of filler size or increasing the filler concentration.