Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T06:42:39.601Z Has data issue: false hasContentIssue false

Role of the Surface Steps on the Growth of CrSi2 on {111} Silicon.

Published online by Cambridge University Press:  15 February 2011

André M. Rocher
Affiliation:
Centre d'Elaboration des Matériaux et d'Etudes Structurales, CEMES/CNRS, BP 4347, 31055, Toulouse cedex, France.
André Oustry
Affiliation:
Laboratoire de Physique des Solides, Université Paul Sabatier, 31062 Toulouse cedex, France.
Marie José David
Affiliation:
Laboratoire de Physique des Solides, Université Paul Sabatier, 31062 Toulouse cedex, France.
Michel Caumont
Affiliation:
Laboratoire de Physique des Solides, Université Paul Sabatier, 31062 Toulouse cedex, France.
Get access

Abstract

CrSi2 layers grown by solid phase epitaxy on a nominal (111) Si surface exhibit in the same proportion two different orientation relationships, named A and B. When CrSi2 is deposited on a 8° vicinal (111) Si surface, B-type orientation is favoured with respect to the A type. This result can be explained by the fact that both the step width introduced by the miscut and the planar coincidence between {1100}Crsi2 and {111}Si are nearly equal to 23Å. Edge type misfit dislocations are observed at the interface with the same spacing. Their Burgers vector component along [111] is almost compensated by the atomic steps along the <110> directions. The role of the steps is discussed in term of elastic energy. Steps introduce misfit dislocations which make possible coherent growth of the B type orientation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Derrien, J., Chevrier, J., Le Thanh, V. and , J. E. Mahan (1992), Appl.Surf. Sci., 56–58, 382 Google Scholar
J.W., Edington (1975) Practical Electron Microscopy in Materials Science, Mc Millan, Vol 3. p 80.Google Scholar
Fathauer, R.W., Grunthaner, P.J., Lin, T. L., Chang, K. T. and Mazur, J.H (1988), Mat. Res. Soc. Symp, Proc, 116, 453 Google Scholar
Hirth, J.P. and Lothe, J., (1968), Theory of dislocations, Editor Mc Graw-Hill Google Scholar
Mahan, J. E., Geib, K.M., Robinson, G.Y., G., Bai and M.A., Nicolet, (1991) J. Vac. Sci. Technol, B 9 (1), 64 Google Scholar
Oustry, A., Caumont, M., David, M.J., Berty, J. and Rocher, A. (1992), Micros. Microanal. Microstruct. 3, 23 Google Scholar
A, Rocher, A., Oustry, M.J., David and M., Caumont, (1994), J. Vac. Sci. Technol. A 12 (6), 3018 Google Scholar
R., Wiesendanger, G., Tarrach, D., Bürgler and H.J., Guntherodt, Europhys. lett., (1990), 12 (1), p. 57 Google Scholar