Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-29T15:00:25.775Z Has data issue: false hasContentIssue false

Self-biased Dual-phase Energy Harvesting System

Published online by Cambridge University Press:  25 June 2013

Yuan Zhou*
Affiliation:
Bio-inspired Materials and Devices Laboratory (BMDL) Center for Energy Harvesting Materials and Systems (CEHMS) Virginia Tech, Blacksburg, VA 24061, USA
Amar Bhalla
Affiliation:
Department of Electrical Engineering, University of Texas at San Antonio, TX.
Shashank Priya
Affiliation:
Bio-inspired Materials and Devices Laboratory (BMDL) Center for Energy Harvesting Materials and Systems (CEHMS) Virginia Tech, Blacksburg, VA 24061, USA
*
*Corresponding Author: Yuan Zhou, yzhou6@vt.edu
Get access

Abstract

In this study, we report the design and fabrication of a dual-phase energy harvester which can synchronously harvest both mechanical and magnetic energy in the absence of DC magnetic field. The harvester consists of a magnetostrictive cantilever beam and a magnetostrictive/ piezoelectric (M/P) self-biased laminate composite structure. This structure allows us to utilize piezoelectric and self-biased magnetoelectric effect simultaneously. By combining these mechanisms together, a sum effect for harvesting both magnetic and vibration energy was realized under DC magnetic field free condition. The bilayer structure provides a simplified geometry that can be easily incorporated into MEMS devices. We demonstrate a hybrid synthesis method for fabrication of complex three-dimensional thin films using a cost-effective and mask-less aerosol jet deposition process. The combination of the hybrid aerosol jet process with dual phase harvester design provides the opportunity to fabricate small scale power sources required for structural health monitoring applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Park, G., Rosing, T., Todd, M. D., Farrar, C. R., and Hodgkiss, W., J. Infrastruct. Syst. 14, 64 (2008)CrossRefGoogle Scholar
Mitcheson, P. D., Yeatman, E. M., Rao, G. K., Holmes, A. S., and Green, T. C., Proceedings of the Ieee 96, 1457 (2008)CrossRefGoogle Scholar
Maten, L., and Moll, F., Proceedings of the SPIE 5837, 359 (2005)Google Scholar
Spaldin, N. A., and Fiebig, M., Science 309, 391 (2005).CrossRefGoogle ScholarPubMed
Priya, S., Islam, R., Dong, S. X., and Vieland, D., J. Electroceram. 19, 147 (2007)Google Scholar
Nan, C.-W., Bichurin, M. I., Dong, S., Viehland, D., and Srinivasan, G., J. Appl. Phys. 103, 301101 (2008).CrossRefGoogle Scholar
Srinivasan, G., Annu. Rev. Mater. Res. 40, 153 (2010)CrossRefGoogle Scholar
Dong, S. X., Zhai, J. Y., Li, J. F., and Viehland, D., Appl. Phys. Lett. 89, 252904 (2006)CrossRefGoogle Scholar
Yang, S. C., Park, C. S., Cho, K. H., and Priya, S., J. Appl. Phys. 108, 093706 (2010).CrossRefGoogle Scholar
Yang, S. C., Cho, K. H., Park, C. S., and Priya, S., Appl. Phys. Lett. 99, 202904 (2011).CrossRefGoogle Scholar
Yang, S. C., Ahn, C. W., Cho, K. H., and Priya, S., J. Am. Ceram. Soc. 94, 3889 (2011).CrossRefGoogle Scholar
Mandal, S. K., Sreenivasulu, G., Petrov, V. M., and Srinivasan, G., Phys. Rev. B. 84, 014432 (2011).CrossRefGoogle Scholar
Mandal, S. K., Sreenivasulu, G., Petrov, V. M., and Srinivasan, G., Appl. Phys. Lett. 96, 192502 (2010).CrossRefGoogle Scholar
Laletin, U., Sreenivasulu, G., Petrov, V. M., Garg, T., Kulkarni, A. R., Venkataramani, N., and Srinivasan, G., Phys. Rev. B. 85, 104404 (2012).CrossRefGoogle Scholar
Zhou, Y., Yang, S. C., Apo, D. J., Maurya, D., and Priya, S., Appl. Phys. Lett. 101, 232905 (2012)CrossRefGoogle Scholar
Folgar, C. E., Suchicital, C., and Priya, S., Materials letters 65, 1302 (2011)CrossRefGoogle Scholar
Park, C. S., Lee, J. W., Park, G. T., Kim, H. E., and Choi, J. J., J. Mater. Res. 22, 1367 (2007)CrossRefGoogle Scholar