Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T03:35:41.321Z Has data issue: false hasContentIssue false

Shear-Thinning and Rapid-Recovery Peptide Hydrogel for Biomedical Applications

Published online by Cambridge University Press:  15 April 2014

Hongzhou John Huang
Affiliation:
Biomaterial and Technology Laboratory, Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, U.S.A.
Xiuzhi Susan Sun*
Affiliation:
Biomaterial and Technology Laboratory, Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, U.S.A.
*
*Corresponding author Email: xss@ksu.edu
Get access

Abstract

Peptides have become attractive molecules for fabricating biomaterials. Studies of peptide structure, assembly properties, and dynamic behavior in response to external parameters have led to rational novel design of peptide biomaterials. One model sequence selected was a β-spiral motif of spider flagelliform silk protein, [GPGGX]n (X = any amino acid). Modifying the X residue can change the quantity of secondary structure and the stability of this spider silk motif. Glycine provides flexible properties, and proline influences the secondary structure and mechanical properties. Another model sequence was GXGXDXUX (U = hydrophobic residue), a Ca2+ binding domain of lipase Lip A from Serratia marcescens, in which aspartate residue is required for ion binding. Combining with [GPGGX]n, we rationally designed peptide as GPGGDGPGGD (eD2). The Ca2+ binding sequence was hidden in the first eight residues of eD2. As expected, this peptide can assemble into nanofibrils triggered by Ca2+ ions. Using the segment FLIVIGSII (h9) from the third trans-membrane segment of subunit IV in the dihydropyridine sensitive human muscle L-type calcium channel as the hydrophobic motif, we obtained FLIVIGSIIGPGGDGPGGD (h9e) peptide. The h9e self-assembled into nanofibrils and further formed shear-thinning and rapid recovery hydrogel in neutral pH range from 6.0 to 8.0 with a large working range of temperature. NMR study showed that amphiphilic structure of h9e peptide tended to adopt a more helical structure during hydrogel formation. The h9e peptide has great potential for biomedical applications. MCF-7 cells were successfully grown as colony-like clusters (reminiscent of real tumors) in h9e hydrogel system. The drug response test of cisplatin further demonstrated the capability of h9e system for drug screen. Moreover, h9e hydrogel showed a promising adjuvanticity by enhancing the vaccine efficacy for killed H1N1 swine influenza virus and PRRS modified live virus.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cui, F.; Li, Y.; Ge, J. Mat. Sci. Eng. R-Reports 2007, 57, 127.CrossRefGoogle Scholar
Cho, N.; Jackman, J. A.; Liu, M.; Frank, C. W. Langmuir 2011, 27, 37393748.CrossRefGoogle Scholar
Morgado, I.; Faendrich, M. Curr. Opin. Col. Int. Sci. 2011, 16, 508514.CrossRefGoogle Scholar
Sun, X. S. J. Bio. Mat. Bio. 2011, 5, 409432.Google Scholar
Afonin, K. A.; Grabow, W. W.; Walker, F. M.; Bindewald, E.; Dobrovolskaia, M. A.; Shapiro, B. A.; Jaeger, L. Nat. Prot. 2011, 6, 20222034.CrossRefGoogle Scholar
Junk, A.; Riess, F. Am. J. Phy. 2006, 74, 825830.CrossRefGoogle Scholar
Madia, W. Mater. Sci. 2006, 37A, 29052918.Google Scholar
Yadugiri, V. T.; Malhotra, R. Curr. Sci. 2010, 99, 900907.Google Scholar
Hauser, C. A. E.; Zhang, S. Chem. Soc. Rev. 2010, 39, 27802790.CrossRefGoogle Scholar
Caplan, M. R.; Moore, P. N.; Zhang, S. G.; Kamm, R. D.; Lauffenburger, D. A. Biomacromolecules 2000, 1, 627631.CrossRefGoogle Scholar
Gelain, F.; Lomander, A.; Vescovi, A. L.; Zhang, S. J. Nanosci. Nanotech. 2007, 7, 424434.CrossRefGoogle Scholar
Zhang, S.; Lockshin, C.; Herbert, A.; Winter, E.; Rich, A. EMBO J. 1992 11 3787 3796 CrossRefGoogle Scholar
Zhang, S.; Holmes, T.; Lockshin, C.; Rich, , Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 33343338.CrossRefGoogle Scholar
Loo, Y.; Zhang, S.; Hauser, C. A. E. Biotechnol. Adv. 2012, 30, 593603.CrossRefGoogle Scholar
Luo, Z.; Wang, S.; Zhang, S. Biomaterials 2011, 32, 20132020.CrossRefGoogle Scholar
Khoe, U.; Yang, Y.; Zhang, S. Langmuir 2009, 25, 41114114.CrossRefGoogle Scholar
Ryadnov, M.; Woolfson, D. Nature Materials 2003, 2, 329332.CrossRefGoogle Scholar
Hartgerink, J.; Beniash, E.; Stupp, S Science 2001, 294, 16841688.Google Scholar
Schneider, J.; Pochan, D.; Ozbas, B.; Rajagopal, K.; Pakstis, L.; Kretsinger, J. J. Am. Chem. Soc. 2002, 124, 1503015037.CrossRefGoogle Scholar
McDaniel, J. R.; Callahan, D. J.; Chilkoti, A. Adv. Drug Deliv. Rev. 2010, 62, 14561467.CrossRefGoogle Scholar
Ringler, P.; Schulz, G. Science 2003, 302, 106109.CrossRefGoogle Scholar
Nagarkar, R. P.; Hule, R. A.; Pochan, D. J.; Schneider, J. P. Biopolymers 2010, 94, 141155.CrossRefGoogle Scholar
Garty, S.; Kimelman-Bleich, N.; Hayouka, Z.; Cohn, D.; Friedler, A.; Pelled, G.; Gazit, D. Biomacromolecules 2010, 11, 15161526.CrossRefGoogle Scholar
Chawla, K.; Yu, T.; Liao, S. W.; Guan, Z. Biomacromolecules 2011, 12, 560567.CrossRefGoogle Scholar
Zhang, S. Wet or let die. Nat. Mater. 2004, 3, 78.CrossRefGoogle ScholarPubMed
Massodi, I.; Moktan, S.; Rawat, A.; Bidwell, , Gene, L. III; Raucher, D. Int. J. Cancer 2010, 126, 533544.CrossRefGoogle Scholar
Aggeli, A.; Bell, M.; Carrick, L.; Fishwick, C.; Harding, R.; Mawer, P.; Radford, S.; Strong, A.; Boden, N. J. Am. Chem. Soc. 2003, 125, 96199628.CrossRefGoogle Scholar
Charati, M. B.; Lee, I.; Hribar, K. C.; Burdick, J. A. Small 2010, 6, 16081611.CrossRefGoogle Scholar
Dawson, E.; Mapili, G.; Erickson, K.; Taqvi, S.; Roy, K. Adv. Drug Deliv. Rev. 2008, 60, 215228.CrossRefGoogle Scholar
Koutsopoulos, S.; Unsworth, L. D.; Nagaia, Y.; Zhang, S. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 46234628.CrossRefGoogle Scholar
Chen, C.; Pan, F.; Zhang, S.; Hu, J.; Cao, M.; Wang, J.; Xu, H.; Zhao, X.; Lu, J. R. Biomacromolecules 2010, 11, 402411.CrossRefGoogle Scholar
Kanlayavattanakul, M.; Lourith, N. Lipopeptides in cosmetics. Inter. J. Cosm. Sci. 2010, 32, 18.CrossRefGoogle ScholarPubMed
Dawson, E.; Mapili, G.; Erickson, K.; Taqvi, S.; Roy, K. Adv. Drug Deliv. Rev. 2008, 60, 215228.CrossRefGoogle Scholar
Feder-Mengus, C.; Ghosh, S.; Reschner, A.; Martin, I.; Spagnoli, G. C. Trends Mol. Med. 2008, 14, 333340.CrossRefGoogle Scholar
Yan, C.; Pochan, D. J. Chem. Soc. Rev. 2010, 39, 35283540.CrossRefGoogle Scholar
Cushing, M. C.; Anseth, K. S. Science 2007, 316, 11331134 CrossRefGoogle ScholarPubMed
Kleinman, H.; Martin, G. Cancer Biol. 2005, 15, 378386.CrossRefGoogle Scholar
McGrath, A. M.; Novikova, L. N.; Novikova, L. N.; Wiberg, M. BD (TM) Brain Res. Bull. 2010, 83, 207213.CrossRefGoogle Scholar
Zhou, M.; Smith, A. M.; Das, A. K.; Hodson, N. W.; Collins, R. F.; Ulijn, R. V.; Gough, J. E. Biomaterials 2009, 30, 25232530.CrossRefGoogle Scholar
Haines-Butterick, L.; Rajagopal, K.; Branco, M.; Salick, D.; Rughani, R.; Pilarz, M.; Lamm, M. S.; Pochan, D. J.; Schneider, J. P. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 77917796.CrossRefGoogle Scholar
George, R.; Heringa, J. Protein Eng. 2002, 15, 871879.CrossRefGoogle Scholar
Levitt, M.; Chothia, C. Nature 1976, 261, 552558.CrossRefGoogle Scholar
Angkawidjaja, C.; Paul, A.; Koga, Y.; Takano, K.; Kanava, S. FEBS letters 2005, 579, 4707.CrossRefGoogle Scholar
Yamada, Y.; Hozumi, K.; Aso, A.; Hotta, A.; Toma, K.; Katagiri, F.; Kikkawa, Y.; Nomizu, M. Biomaterials 2012, 33, 41184125.CrossRefGoogle ScholarPubMed
Okuyama, K. Biopolymers 2009, 91, 361372.CrossRefGoogle Scholar
Megeed. Adv. Drug Deliv. Rev. 2002, 54, 1075.Google Scholar
Gifford, J. L.; Walsh, M. P.; Vogel, H. J. Biochem. J. 2007, 405, 199221.CrossRefGoogle Scholar
Nelson, M. R.; Chazin, W. J. Biometals 1998, 11, 297318.CrossRefGoogle Scholar
Huang, H.; Sun, X. Biomacromolecules, 2010, 11, 33903394.CrossRefGoogle Scholar
Huang, H.; Shi, J.; Laskin, J.; Liu, Z.; McVey, D. S.; Sun, X. Soft Matter, 2011, 7, 89058912.CrossRefGoogle Scholar
Shen, X.; Mo, X.; Moore, R.; Frazier, S. J.; Iwamoto, T.; Tomich, J. M. et al. . J. Nanosci. Nanotechnol. 2006, 6, 837844.CrossRefGoogle Scholar
Mo, X.; Hiromasa, Y.; Warner, M.; Al-Rawi, A. N.; Iwamoto, T.; Rahman, T. S. et al. . Biophys. J. 2008, 94, 18071817.CrossRefGoogle Scholar
Huang, H.; Herrera, A. I.; Luo, Z.; Prakash, O.; Sun, X. Biophysical Journal. 2012, 103, 979988.CrossRefGoogle Scholar
Huang, H.; Ding, Y.; Sun, X.; Nguyen, T. A. PLOS ONE, 2013, e59482.CrossRefGoogle Scholar
Li, X.; Galliher-Beckley, A.J.; Nietfeld, J.C., Huang, H.; Sun, X.; Faaberg, K.S.; Shi, J. Vaccine, 2013, 31, 45084515.CrossRefGoogle ScholarPubMed
Kelter, G, Sweeney, NJ, Strohfeldt, K, Fiebig, HH. Tacke MAnticancer Drug, 2005, 16: 10911098.CrossRefGoogle Scholar