Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-13T03:07:38.528Z Has data issue: false hasContentIssue false

Solidification Modeling of Bulk Amorphous Alloys

Published online by Cambridge University Press:  01 February 2011

Sang Bok Lee
Affiliation:
Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang, 790–784, Korea
Nack J. Kim
Affiliation:
Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang, 790–784, Korea
Get access

Abstract

Classical heterogeneous nucleation theory coupled with DTA data has been used to closely estimate the crystallization behavior of continuously cooled bulk metallic glass (BMG) alloys. Continuous cooling transformation and time temperature transformation diagrams of three BMG alloys, Zr41.2Ti13.8Cu12.5Ni10Be22.5, Cu47Ti33Zr11Ni6Si1Sn2 and Mg65Cu25Y10 alloys, have been calculated. The critical cooling rates Rc of three alloys were calculated to be 1.7 K/s, 242 K/s and 36 K/s for Zr41.2Ti13.8Cu12.5Ni10Be22.5, Cu47Ti33Zr11Ni6Si1Sn2 and of Mg65Cu25Y10 alloys, respectively, which match well with the experimental values. We conclude that heterogeneous nucleation is more favorable than homogeneous nucleation for the formation of crystals during cooling of BMG alloy liquids. Our approach can be applied to the analyses of crystallization kinetics of BMG alloys with a wide range of critical cooling rates during continuous cooling as well as isothermal annealing.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Park, W. W., You, B. S., and Kim, N. J., Metals and Materials 5, 593 (1999).Google Scholar
2. Lee, J. S., Lee, E. S., Park, W. J., Jung, J. Y., Ahn, S., and Kim, N. J., Metals and Materials 5, 141 (1999).Google Scholar
3. Fleury, E., Lee, S. M., Kim, W. T., and Kim, D.H., Metals and Materials 6, 415 (2000).Google Scholar
4. Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
5. Inoue, A., Nishiyama, N., and Matsuda, N., Mater. Trans. JIM 37, 181 (1996).Google Scholar
6. Turnbull, D., Contemp. Phys. 10, 473 (1969).Google Scholar
7. Uhlmann, D. R., J. Non-Cryst. Solids 7, 337 (1972).Google Scholar
8. A Davies, H., Phys. Chem. Glasses 17, 159 (1976).Google Scholar
9. Kim, Y. J., Metals and Materials 1, 85 (1995).Google Scholar
10. Kim, Y. J., Busch, R., Johnson, W. L., Rulison, A. J., and Rhim, W. K., Appl. Phys. Lett. 68, 1057 (1996).Google Scholar
11. Masuhr, A., Waniuk, T. A., Busch, R., and Johnson, W. L., Phys. Rev. Lett. 82, 2290 (1999).Google Scholar
12. Busch, R., Masuhr, A., and Johnson, W. L., Mater. Sci. & Egi. A304–306, 97 (2001).Google Scholar
13. Lee, S. B., Kim, D., and Kim, N. J., J. of Metastable and Nanocryst. Mater. 15–16, 433 (2003).Google Scholar
14. Kelly, T.F., Cohen, M., and Vander Sande, J.B., Metall. Trans. A15, 819 (1984).Google Scholar
15. Lee, E.S. and Ahn, S., Acta Metall. Mater. 42, 3231 (1994).Google Scholar
16. Hirth, J. P., Metall. Trans. A9, 401 (1978).Google Scholar
17. Turnbull, D., J. Chem. Phys. 20, 411 (1952).Google Scholar
18. Assadi, H. and Schroers, J., Acta Mater. 50, 89 (2002).Google Scholar
19. Inoue, A., Kato, A., Zhang, T., Kim, S.G. and Masumoto, T., Mater. Trans. JIM 32, 609 (1991).Google Scholar
20. Busch, R., Liu, W., and Johnson, W.L., J. Appl. Phys. 83, 4134 (1998).Google Scholar
21. Glade, S.C. and Johnson, W.L., J. Appl. Phys. 87, 7249 (2000).Google Scholar
22. Bossuyt, S., Scrip. Mater. 44 2781, (2001).Google Scholar
23. Park, E. S., Lim, H. K., Kim, W. T., and Kim, D. H., J. Non-Crys. Solids 298, 15 (2002).Google Scholar
24. Nishiyama, N. and Inoue, A., Acta Mater. 47, 1487 (1999).Google Scholar
25. Schroers, J., Wu, Y., Busch, R., and Johnson, W. L., Acta Mater. 49, 2773 (2001).Google Scholar