No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
Magnesium binary and ternary alloy systems have been popular as a thermoelectric light-weight alloy to be working in the medium temperature range. The solid-state reactivity via the bulk mechanical alloying is applied to yield these types of alloys. The diffusion-controlled solid-state synthesis is first stated as a process to yield a binary compound, Mg2X (X = Ge, Sn and Pb). This processing is further applied to directly synthesize several ternary thermoelectric alloys Mg2Si1-xGex, Mg2Si1-ySny and Mg2Sn1-zPbz for 0.0 < x, y, z < 1.0 and to evaluate their thermoelectric properties. Hot pressing is used to make full-dense billets and samples for thermoelectric measurement. The effect of germanium and tin contents on their Seebeck coefficient and band-gap is investigated to describe the p-n transition behavior and to understand the change of electric structure with solid solution formation.