Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T00:00:57.687Z Has data issue: false hasContentIssue false

Solution Phase Synthesis of Semiconductor Nanowires

Published online by Cambridge University Press:  01 February 2011

Katherine L. Hull
Affiliation:
Department of Chemistry and Biochemistry, Notre Dame, IN 46556 Notre Dame Radiation Laboratory, and Notre Dame, IN 46556
James W. Grebinski
Affiliation:
Notre Dame Radiation Laboratory, and Notre Dame, IN 46556
Jing Zhang
Affiliation:
Department of Electrical Engineering Notre Dame, IN 46556
Thomas H. Kosel
Affiliation:
Department of Electrical Engineering Notre Dame, IN 46556
Masaru Kuno
Affiliation:
Department of Chemistry and Biochemistry, Notre Dame, IN 46556 Notre Dame Radiation Laboratory, and Notre Dame, IN 46556
Get access

Abstract

The solution phase synthesis of narrow diameter CdSe and PbSe nanowires (NWs) is described. Crystalline NWs with lengths between 1–10 μm are obtained using a seeded solution approach, whereby NW growth is catalyzed by Au/Bi core/shell nanoparticles (NPs). A gold biphasic reduction step results in 1.5 (3) nm diameter Au NPs and is followed by the thermolysis of trialkylbismuthines to yield low melting, bimetallic particles with diameters less than 3 nm. These Au/Bi NPs are catalytically active towards the growth of similar diameter CdSe NWs (∼7 nm) that exhibit quantum confinement effects. By varying the ratio of Cd (or Pb) to Se, both straight and branched NWs can be obtained, with branched structures including v-shapes, tripods, and y-shapes in the case of CdSe and t-shapes in the case of PbSe. Structural characterization shows that both straight and branched CdSe NWs grow along either the <111> zinc blende (ZB) or <0001> wurtzite (W) directions. Conversely, PbSe has a rocksalt crystal structure, and both straight and branched NWs grow along <100> directions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Science., 1995, 270, 1791.;Google Scholar
Yu, H.; Buhro, W. E. Adv. Mat. 2003, 15(5), 416.;Google Scholar
Yu, H.; Li, J. B.; Loomis, R. A.; Wang, L. W.; Buhro, W. E. Nature Mat. 2003, 2(8), 517.;Google Scholar
Trentler, T. J.; Goel, S. C.; Hickman, K. M.; Viano, A. M.; Chiang, M. Y.; Beatty, A. M.; Gibbons, P. C.; Buhro, W. E. J. Am. Chem. Soc. 1997, 119(9), 2172;Google Scholar
Yu, H.; Li, J.; Loomis, R. A.; Gibbons, P. C.; Wang, L. W.; Buhro, W. E. J. Am. Chem. Soc. 2003, 124(17), 16168.Google Scholar
2. Wagner, R. S.; Ellis, W. C. App. Phys. Lett. 1964, 4(5), 89;Google Scholar
Wagner, R. S.; Ellis, W. C.; Jackson, K. A.; Arnold, S. M. J. App. Phys. 1964, 35(10), 2993.;Google Scholar
Wagner, R. S. VLS Mechanism of Crystal Growth. In Whisker Technology; Levitt, A. P., Ed.; Wiley: New York, 1970.Google Scholar
3. Zhao, Y.; Zhang, Z.; Dang, H. J. Phys. Chem. B, 2003, 107, 7574.Google Scholar
4. Nedeljkovic, J. M.; Micic, O. I.; Ahrenkiel, S. P.; Miedaner, A.; Nozik, A. J. J. Am. Chem. Soc., 2004, 126, 2632.Google Scholar
5. Bonnemann, H.; Brijoux, W.; Joussen, T. Angew. Chem. Int. Ed. Engl., 1990, 29(3), 273.Google Scholar
6. Nayral, C.; Viala, E.; Fau, P.; Senocq, F.; Jumas, J. C.; Maisonnat, A.; Chaudret, B. Chem. Eur. J., 2000, 6(22), 4082.Google Scholar
7. Gutierrez, M.; Henglein, A. J. Phys. Chem., 1996, 100, 7656.Google Scholar
8. Fang, J.; Stokes, K. L.; Wiemann, J. A.; Zhou, W. L.; Dai, J.; Chen, F.; O'Connor, C. J. Mat. Sci. Eng. B, 2001, 83, 254.Google Scholar
9. Foos, E. E.; Stroud, R. M.; Berry, A. D.; Snow, A. W.; Armistead, J. P. J. Am. Chem. Soc., 2000, 122, 7114.Google Scholar
10. Grebinski, J. W.; Richter, K. L.; Zhang, J.; Kosel, T. H.; Kuno, M. J. Phys. Chem. B, 2004, 108(28), 9745.Google Scholar
11. Peng, X. J. Am. Chem. Soc. 2002, 124, 3343;Google Scholar
Peng, X.; Wickham, J.; Alivisatos, A. P. J. Am. Chem. Soc. 1998, 120, 5343.Google Scholar
12. Yoffe, A. D. Adv. Phys. 2001, 50, 1.Google Scholar
13. Efros, A. L.; Rosen, M. Ann. Rev. Mater. Sci. 2000, 30, 475;Google Scholar
Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M. Phys. Rev. B 1996, 54, 4843;Google Scholar
Nirmal, M.; Norris, D. J.; Kuno, M.; Bawendi, M. G.; Efros, A. L.; Rosen, M. Phys. Rev. Lett. 1995, 75, 3728.Google Scholar
14. Murray, C. B.; Norris, D. J.; Bawendi, M. G.; J. Am. Chem. Soc. 1993, 115, 8706.Google Scholar
15. Katari, J. E. B.; Colvin, V. L.; Alivisatos, A. P.; J. Phys. Chem. 1994, 98 (15), 4109.Google Scholar
16. Peng, Z. A.; Peng, X. G.; J. Am. Chem. Soc. 2001, 123, 183;Google Scholar
Qu, L.; Peng, Z. A.; Peng, X. Nano. Lett. 2001, 1 (6), 333.Google Scholar
17. Norris, D. J.; Bawendi, M. G.; Phys. Rev. B 1996, 53, 16338;Google Scholar
Banin, U.; Lee, C. J.; Guzelian, A. A.; Kadavanich, A. V.; Alivisatos, A. P.; Jaskolski, W.; Bryant, G. W.; Efros, A. L.; Rosen, M. J. Chem. Phys. 1998, 109, 2306;Google Scholar
Norris, D. J.; Bawendi, M. G. Phys. Rev. B 1996, 53, 16347.Google Scholar
18. Kuno, M.; Lee, J. K.; Dabbousi, B. O.; Mikulec, F. V.; Bawendi, M. G. J. Chem. Phys. 1997, 106, 9896.Google Scholar
19. Murray, C.B.; Sun, S. H.; Gaschler, W.; Doyle, H.; Betley, T.A.; Kagan, C. R. IBM J. Res. Dev., 2001, 45, 47.Google Scholar
20. Du, H.; Chen, C.; Krishnan, R.; Krauss, T.D.; Harbold, J. M.; Wise, F. W.; Thomas, M. G.; Silcox, J. Nano Lett., 2002, 2, 1321.Google Scholar
21. Wehrenberg, B. L.; Wang, C.; Guyot-Sionnest, P. J. Phys. Chem. B, 2002, 106, 10634.Google Scholar
22. Steckel, J. S.; Coe-Sullivan, S.; Bulovic, V.; Bawendi, M. G. Adv. Mater., 2003, 15, 1862.Google Scholar
23. Sashchiuk, A.; Amirav, L.; Bashouti, M.; Krueger, M.; Sivan, U.; Lifshitz, E. Nano Lett., 2004, 4, 159.Google Scholar
24. Weare, W. W.; Reed, S. M.; Warner, M. G.; Hutchison, J. E.; J. Am. Chem. Soc., 2000, 122, 12890.Google Scholar
25. Grebinski, J. W.; Hull, K. L.; Zhang, J.; Kosel, T. H.; Kuno, M. Chem. Mater. In print.Google Scholar