Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-04T02:56:43.792Z Has data issue: false hasContentIssue false

Solution-deposited ZnO-organic diodes with high current density and high frequency rectification under ambient conditions

Published online by Cambridge University Press:  01 February 2011

Bhola N Pal
Affiliation:
bpal3@jhu.edu, Johns Hopkins University, Department of Material Science and Engineering, 103 Maryland Hall,3400 N Charles street, Baltimore, MD, 21218, United States, 410-516-0567
Jia Sun
Affiliation:
jsun11@jhu.edu, Johns Hopkins University, Department of Material Science and Engineering, 103 Maryland Hall,, 3400 N Charles Street, Baltimore, MD, 21218, United States
Byung Jun Jung
Affiliation:
bjung6@jhu.edu, Johns Hopkins University, Department of Material Science and Engineering, 103 Maryland Hall,, 3400 N Charles Street, Baltimore, MD, 21218, United States
Howard E Katz
Affiliation:
hkatz5@jhu.edu, Johns Hopkins University, Department of Material Science and Engineering, 103 Maryland Hall,, 3400 N Charles Street, Baltimore, MD, 21218, United States
Get access

Abstract

n-ZnO/p-Pentacene and n-ZnO/poly(bis(dodecyl)quaterthiophene) (p-PQT-12) vertical p-n junction diodes were prepared on ITO-coated glass. A continuous film of ZnO nanoparticles was grown on the ITO glass by dip-coating and subsequent heat treatment of a zinc acetate film. Pentacene was then thermally evaporated to form the ZnO/Pentacene diode, whereas PQT-12 was spin coated for the ZnO/PQT-12 diode. Based on the band energies of ZnO, pentacene and PQT-12, for efficient carrier injection, gold was chosen as the top electrode to complement the ITO for both diodes. The microstructures of ZnO and pentacene films are studied by AFM and show a layer of pentacene grains with about twice the extent of the underlying layer of ZnO grains, implying substantial interfacial contact between them The current density-voltage (J-V) measurement shows that the maximum current density for ZnO/Pentacene and ZnO/PQT12 are 160 A/cm2 and 350 A/cm2 respectively. The rectification was characterized by observation of full input-half output waves. Data indicate that these devices can operate up to frequencies of 20 MHz and 9 MHz for ZnO/Pentacene and ZnO/PQT12, respectively, under ambient environment conditions. This rectification frequency is higher than other reported organic and polymer Schottky diodes under these conditions. Turn on voltages of these diodes are also much lower than for the reported organic and polymer diodes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jackson, T. N., Nat. Mater. 4, 581, (2005).Google Scholar
2. Gundlach, D. J., Nat. Mater. 6, 173, (2007).10.1038/nmat1856Google Scholar
3. Kelley, T. W., Baude, P. f., Gerlach, C., Ender, D. E., Muyres, D., Haase, M. A., Vogel, D., and Theiss, S. D., Chem. Of Mater. 16, 4413, (2004).10.1021/cm049614jGoogle Scholar
4. Parashkov, R., Becker, E., Riedel, T., Johannes, H.-H., and Kowalsky, W., Proc. Of The IEEE, 93, 1321, (2005).10.1109/JPROC.2005.850304Google Scholar
5. Garnier, F., Hajlaoui, R., Yassar, A., and Shirakawa, P., Science 265, 1684, (1994).10.1126/science.265.5179.1684Google Scholar
6. Muccini, M., Nat. Mater. 5, 605, (2006).Google Scholar
7. Roman, L.S., Berggren, M. and Inganas, O., Appl. Phys. Lett. 75, 3557 (1999).Google Scholar
8. Chen, K. M., Zhang, Y. X., Qin, G. G., Jin, S. X., Wu, K., Li, C. Y., Gu, Z. N., and Zhou, X. H., Appl. Phys. Lett. 69, 3557, (1996).Google Scholar
9. Ma, L., Pyo, S., Ouyang, J., Xu, Q., and Yang, Y., Appl. Phys Lett. 82, 1419, (2003)Google Scholar
10. Finkenzeller, K., RFID Handbook Vol. 1 Ch. 5, (Wiley, New York, 2002), p-114.Google Scholar
11. Cantatore, E., Geuns, T. C. T., Gelinck, G. H., Veenendaal, E. van, Gruijthuijsen, A. F. A., Schrijnemakers, L., Drews, S., and Leeuw, D. M. de, IEEE J. S. S. Cir, 42, 84, (2007).10.1109/JSSC.2006.886556Google Scholar
12. Ghovanloo, M., and Najafi, K., IEEE J of Sold. State C. 39, 1976, (2004)Google Scholar
13. Potyrailo, R. A. and Morris, W. G., Anal. Chem., 79, 45, (2007)Google Scholar
14. Jamali, B., Cole, P., Ranasinghe, D., Zhu, Z., Proceedings of SPIE, 5649, 323, (2005)10.1117/12.582240Google Scholar
15. Subramanian, V., Chang, P. C., Lee, J. B., Molesa, S. E., and Volkman, S. K., IEEE Tran. Com. and Pack. Tech. 28, 742, (2005)10.1109/TCAPT.2005.859672Google Scholar
16. Ma, L., Ouyang, J., and Yang, Y., Appl. Phys. Lett. 84, 4786, (2004).10.1063/1.1760225Google Scholar
17. Steudel, S., Myny, K., Arkhipov, V., Deibel, C., De, S. Vusser, Genoe, J., and Heremans, P., Nat. Mater. 4, 597, (2005).Google Scholar
18. Steudel, S., Vusser, S. De, Myny, K., Lenes, M., Genoe, J., and Heremans, P., J. Appl. Phys. 99, 114519, (2006).10.1063/1.2202243Google Scholar
19. Vusser, S. De, Steudel, S., Myny, K., Genoe, J., and Heremans, P., Mater. Res. Soc. Symp. Proc. 870E, H1.4.1, (2005)Google Scholar
20. Ai, Y., Gowrisanker, S., Jia, H., Trachtenberg, I., Vogel, E., Wallace, R. M., Gnade, B. E., Barnett, R., Stiegler, H., and Edwards, H., Appl. Phys. Lett. 90, 262105, (2007)Google Scholar
21. Hwang, D. K., Kang, S. H., Lim, J. H., Yang, E. J., Oh, J. Y., Yang, J. H., and Park, S. J., Appl. Phys. Lett. 86, 222101, (2005)10.1063/1.1940736Google Scholar
22. Pradhan, B., Batabyal, S. K., and Pal, A. J., Appl. Phys. Lett. 89, 233109, (2006)10.1063/1.2398899Google Scholar
23. Jiao, S. J., Zhang, Z. Z., Lu, Y. M., Shen, a_ D. Z., Yao, B., Zhang, J. Y., Li, B. H., Zhao, D. X., and Fan, X. W., Tang, Z. K., Appl. Phys. Lett. 88, 031911, (2006)10.1063/1.2166686Google Scholar
24. Bian, J. M., Li, X. M., a) Zhang, C. Y., Yu, W. D., and Gao, X. D., Appl. Phys. Lett. 85, 4070, (2004)Google Scholar
25. Beek, W. J. E., Wienk, M. W., and Janssen, R. A., Adv. Mater. 16, 1009, (2004).10.1002/adma.200306659Google Scholar
26. Hirose, Y., Chen, W., Haskal, E. I., Forrest, S. R., and Kahn, A., Appl. Phys. Lett. 64, 3482, (1994).10.1063/1.111247Google Scholar
27. Sze, S. M., Physics of semiconductor devices, (Wiley, New York, 1981).Google Scholar
28. Chiang, K. Y., Tseng, H. Y., Lin, C. Y., Kung, C. P., and Hou, W. H., Mater. Res. Soc. Symp. Proc. 965, 0965–S05, (2007)Google Scholar