Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T06:45:00.487Z Has data issue: false hasContentIssue false

Sorption of Nuclear Waste Components by Layered Hydrazinium Titanate: a Straightforward Route to Durable Ceramic Forms

Published online by Cambridge University Press:  23 March 2012

Sergey N. Britvin
Affiliation:
Department of Crystallography, Geological Faculty, St. Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russia; Nanomaterials Research Center, Kola Science Center RAN, Fersman Str. 20, 184200 Apatity, Murmansk Region, Russia
Yulia I. Korneyko
Affiliation:
V.G. Khlopin Radium Institute, 28, 2-nd Murinskiy Ave., St. Petersburg, 194021, Russia
Boris E. Burakov
Affiliation:
V.G. Khlopin Radium Institute, 28, 2-nd Murinskiy Ave., St. Petersburg, 194021, Russia
Andriy Lotnyk
Affiliation:
Institute for Material Science, Synthesis and Real Structure, University Kiel, Kaiserstr. 2, 24143 Kiel, Germany
Lorenz Kienle
Affiliation:
Institute for Material Science, Synthesis and Real Structure, University Kiel, Kaiserstr. 2, 24143 Kiel, Germany
Wulf Depmeier
Affiliation:
Institute for Geosciences, University Kiel, Olshausenstr. 40, 24118 Kiel, Germany
Sergey V. Krivovichev
Affiliation:
Department of Crystallography, Geological Faculty, St. Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russia; Nanomaterials Research Center, Kola Science Center RAN, Fersman Str. 20, 184200 Apatity, Murmansk Region, Russia
Get access

Abstract

Layered hydrazinium titanate LHT-9, (N2H5)1/2Ti1.87O4 is a new nanohybrid material related to lepidocrocite-type titanates. Unique combination of ion exchange, reductive properties, surface activity due to Brønsted acid sites and occurrence of surface titanyl groups allows exploring LHT-9 for simultaneous uptake of almost all components of liquid nuclear wastes. LHT-9 irreversibly removes technetium, molybdenum, palladium and selenium from their aqueous solutions by specific mechanism of reductive adsorption. For removal of cesium, strontium, transition elements, actinides and lanthanides LHT-9 provides mechanisms of ion exchange and surface complexation. Products of adsorption are nanocrystalline and homogeneous powders loaded with 5 to 15 wt. % of radionuclides and non-radioactive elements. LHT-9 can be applied as ready-to-use precursor for one-step synthesis of durable titanate ceramic waste forms similar to SYNROC. An essential advantage of LHT-9 in comparison with other titanate sorbents (monosodium titanate and peroxo-titanate materials) is the absence of Na in its composition that permits arbitrary tailoring of sorbent properties by simple pre-treatment with the desired elements. Results on sorption of americium, cesium, strontium and lanthanides by LHT-9 are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mann, N. R., and Todd, T. A., Sep. Sci. Technol., 39, #10, 23512371 (2004).10.1081/SS-120039321Google Scholar
2. Nyman, M., Tripathi, A., Parise, J. B., Maxwell, R. S., Harrison, W. T. A., and Nenoff, T. M., J. Am. Chem. Soc., 123, #7, 15291530 (2001).10.1021/ja005816eGoogle Scholar
3. Britvin, S. N., Lotnyk, A., Kienle, L., Krivovichev, S. V., and Depmeier, W., J. Am. Chem. Soc., 133, #24, 95169525 (2011).10.1021/ja202053qGoogle Scholar
4. Britvin, S. N., Depmeier, W., Krivovichev, S. V., Siidra, O. I., Zolotarev, A. A., Gurzhiy, V. V, Spiridonova, D. V., Patent WO 2011/116788 A1.Google Scholar
5. Berman, S. S., Sturgeon, R. E., Desaulniers, J. A. H., and Mykyfluk, A. P., Marine Poll. Bull., 14, 6973 (1983).10.1016/0025-326X(83)90195-9Google Scholar
6. White, T. J., Segall, R. L., and Turner, P. S., Angew. Chem. Int. Ed., 24, #5, 357-438 (1985).10.1002/anie.198503573Google Scholar
7. Krivovichev, S. V., Yudintsev, S. V., Stefanovsky, S. V., Organova, N. I., Karimova, O. V., and Urusov, V. S., Angew. Chem. Int. Ed., 49, #51, 99829984 (2010).10.1002/anie.201005674Google Scholar
8. Lynch, R., Dosch, R., Kenna, B., Johnstone, J., and Nowak, E., IAEA Symposium on the Management of Radioactive Waste. Vienna, Austria, 360372 (1976).Google Scholar
9. Hobbs, D. T., Poirier, M. R., Barnes, M. J., Peters, T. B., Fondeur, F. F., Thompson, M. E., Fink, S. D., and Nyman, M. D., WM’08 Conference, February 24–28, Phoenix, AZ (2008).Google Scholar
10. Nyman, M., and Hobbs, D. T., Chem. Mater., 18, 64256435 (2006).10.1021/cm061797hGoogle Scholar
11. Lutze, W., and Ewing, R. C., Radioactive Waste Forms for the Future. (Elsevier, 1988).Google Scholar