Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T07:14:43.251Z Has data issue: false hasContentIssue false

Spectral Response Modification Of Quantum Well Infrared Photodetector By Quantum Well Intermixing

Published online by Cambridge University Press:  11 February 2011

J. C. Shin
Affiliation:
Nano-Device Research Center, Korea Institute of Science and Technology, P.O. Box 131 Cheongryang, Seoul 130–650, Korea
W. J. Choi
Affiliation:
Nano-Device Research Center, Korea Institute of Science and Technology, P.O. Box 131 Cheongryang, Seoul 130–650, Korea
I. K. Han
Affiliation:
Nano-Device Research Center, Korea Institute of Science and Technology, P.O. Box 131 Cheongryang, Seoul 130–650, Korea
Y. J. Park
Affiliation:
Nano-Device Research Center, Korea Institute of Science and Technology, P.O. Box 131 Cheongryang, Seoul 130–650, Korea
J. I. Lee
Affiliation:
Nano-Device Research Center, Korea Institute of Science and Technology, P.O. Box 131 Cheongryang, Seoul 130–650, Korea
E. K. Kim
Affiliation:
Dept. of Physics, Hanyang University, Seoul 133–751, Korea
H. J. Kim
Affiliation:
Dept. of Physics, Kyunghee University, Yongin 449–701, Korea
J. W. Choi
Affiliation:
Dept. of Physics, Kyunghee University, Yongin 449–701, Korea
Get access

Abstract

We have studied the change of the spectral response in a quantum well infrared photodetector (QWIP) by using the impurity-free vacancy disordering (IFVD) to change the bandgap of the GaAs/AlGaAs multiple quantum well absorption layer. IFVD process has been carried out with PECVD-grown SiO2 capping on the MOCVD-grown QWIP structure, whose absorption region consists of 25 periods of 3.6nm thick Si-doped GaAs well and 50nm thick Al0.24Ga0.76As barrier. The PL peak of MQW decreased with the increase of annealing temperature and time from 802 nm to 700 nm at 15 K. The fabricated QWIP whose absorption region was intermixed at 850 °C by IFVD technique showed the maximum change in spectral response from 8 to 10 um when compared to a QWIP without intermixing. This result implies that the intermixing technology can be used to make multicolor QWIP without growing multiple IR absorption regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Levine, B. F. et al., J. Appl. Phys. 74, R1(1993)Google Scholar
[2] West, L. C. and Eglash, S. J. et al., Appl. Phys. Lett. 46, 1156(1985)Google Scholar
[3] Levine, B. F., Bethea, C. G, Hasnain, G., Walker, J. and Malik, R. J., Appl. Phys. Lett. 53, 296(1988)Google Scholar
[4] Levine, B.F., Hasnain, G., Bethea, C. G and Chand, N., Appl. Phys. Lett. 54, 2704(1989)Google Scholar
[5] Levine, B. F. et al., Appl. Phys. Lett. 56, 2354(1990)Google Scholar
[6] Park, Yoon Soo, J. Korean. Phys. Soc. 32, 443(1998)Google Scholar
[7] Hwang, X. L., Shin, Y. G., Suh, E. K., Lee, H. J. and Huang, Q., J. Korean. Phys. Soc. 31, 781(1997)Google Scholar
[8] Gunapala, Sarath D., Bandara, Sumith V., Singh, A., Liu, John K., Rafol, Sir B., Luong, E. M., Mumolo, Jason M., Tran, Nhan Q., Ting, David Z.–Y., IEEE. Quantum Electronics. 47, 963(2000)Google Scholar
[9] Choi, W. J., Lee, S., Zhang, J., Kim, Y., Kim, S. K., Lee, J. I., Kang, K. N., and Cho, K., Jpn. J. Appl. Phys. 34(1995)Google Scholar
[10] Choi, W. J., Lee, S., Kim, Y., Kim, S. K., Lee, J. I., Kang, K. N., Park, N., Park, H. L., and Cho, K., J. Mater. Sci. Lett., 14, 1433(1995)Google Scholar
[11] Choi, W. J., Han, S. M., Shah, S. I., Choi, S. G., Woo, D. H., Lee, S., Kim, S. H., Lee, J. I., Kang, K. N., IEEE. J. Quantum Electronics. 4 624(1998)Google Scholar
[12] Laidig, W. D., Holonyak, N. Jr, Camras, M. D., Hess, K., Coleman, J. J., Dapkus, P. D. and Bardeen, J., Appl. Phys. Lett. 38, 776(1981)Google Scholar
[13] Zucker, J. E., Tell, B., Jones, K. S., Divino, M. D., Brown-Goebeler, K. F., Joyner, C. H., Miller, B. I. and Young, M. G., Appl. Phys. Lett. 60, 3030(1992)Google Scholar
[14] Sudo, S., Onishi, H., Nakano, Y., Shimogaki, Y., Tada, K., Mondry, M. J. and Coldren, L. A., Jpn. J. Appl. Part1 35, 1276(1996)Google Scholar