Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T06:44:11.675Z Has data issue: false hasContentIssue false

Spectroscopic Ellipsometry and Interference Reflectometry Measurements of CVD Silicon Grown on Oxidized Silicon

Published online by Cambridge University Press:  28 February 2011

G. E. Jellison Jr
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
M. Keefer
Affiliation:
Prometrix Corp., Santa Clara, CA 95054
L. Thornquist
Affiliation:
Prometrix Corp., Santa Clara, CA 95054
Get access

Abstract

Several samples of thin-film silicon grown on oxidized Si, both oxidized and unoxidized, have been examined using spectroscopie ellipsometry (SE) and constant angle reflection interference spectroscopy (CARIS). The SE data was fit to 5- or 6- layer models of the sample near-surface region, using the optical functions of thin-film silicon determined from a previous work. Reasonable fits were obtained from samples containing amorphous Si (a-Si) or large-grain poly-crystalline Si (p-Si), but fits to samples containing small-grain, undoped p-Si were poor unless a 8–15 nm surface roughness layer is included. Furthermore, the optical functions of p-Si:ud are not consistent from sample to sample. The optical functions determined from SE measurements were then used to interpret CARIS measurements, extracting the thicknesses of the films, which are then compared with the thicknesses obtained from SE.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bagley, B. G., Aspnes, D. E., Adams, A. C., and Mogab, C. J., Appl. Phys. Lett. 38, 56 (1981).Google Scholar
2. Aspnes, D. E., J. Vac. Sci. Technol. 18, 289 (1981).Google Scholar
3. Aspnes, D. E., Studna, A. A., and Kinsbron, E., Phys. Rev. B 29, 768 (1984).Google Scholar
4. Vedam, K., McMarr, P. J., and Narayan, J., Appl. Phys. Lett. 47, 339 (1985).Google Scholar
5. Collins, R. W., Clark, A. H., Guha, S., and Huang, C.-Y., J. Appl. Phys. 57, 4566 (1985).Google Scholar
6. Kumar, S., Drevillon, B., and Godet, C., J. Appl. Phys. 60, 1542 (1986).Google Scholar
7. Drevillon, B., Godet, B., and Kumar, S., Appi Phys. Lett. 50, 1651 (1986).Google Scholar
8. Logothetidis, S., J. Appl. Phys. 65, 2416 (1989).Google Scholar
9. Snyder, P. G., Xiong, Y. M., Woollam, J. A., Krosche, E. R., and Strausser, Y., Surface and Interface Analysis, 18, 113 (1992).Google Scholar
10. Jellison, G. E. Jr., Chisholm, M. F., and Gorbatkin, S. M., submitted to Appl. Phys. Lett. Google Scholar
11. Bruggeman, D. A. G., Ann. Phys. (Leipzig) 24, 636 (1936).Google Scholar
12. Jellison, G. E. Jr., Opti. Mater. 1, 41 (1992).Google Scholar
13. Jellison, G. E. Jr. and Modine, F. A., Appl. Opt. 29, 959 (1990).Google Scholar
14. Jellison, G. E. Jr., Appl. Opt. 30, 3354 (1991).Google Scholar