Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T06:56:32.925Z Has data issue: false hasContentIssue false

Spin Reorientation in Fe/Cu(100) and Cu/Fe/Cu(100)

Published online by Cambridge University Press:  15 February 2011

E. Mentz
Affiliation:
Institut für Experimentalphysik. Freie Universität Berlin. D-14195 Berlin. Germany. e-mail: mentz@physik.fu-berlin.de
A. Bauer
Affiliation:
Institut für Experimentalphysik. Freie Universität Berlin. D-14195 Berlin. Germany. e-mail: mentz@physik.fu-berlin.de
D. Weiss
Affiliation:
Institut für Experimentalphysik. Freie Universität Berlin. D-14195 Berlin. Germany. e-mail: mentz@physik.fu-berlin.de
G. Kaindl
Affiliation:
Institut für Experimentalphysik. Freie Universität Berlin. D-14195 Berlin. Germany. e-mail: mentz@physik.fu-berlin.de
Get access

Abstract

In-situ scanning tunneling microscopy (STM). magneto-optical Kerr effect (MOKE) and Kerr microscopy are used to investigate the relations between structure, morphology, and magnetism in low-temperature (LT) grown Fe/Cu(100) films. At the spin reorientation thickness of ≈ 3.8 monolayers (ML) Fe/Cu(100) the coexistence of in-plane and out-of-plane magnetized domains is observed. For Fe thicknesses between 3.8 and 6 ML Fe/Cu(100). an irreversible spin reorientation from in-plane to out-of-plane can be induced by annealing up to 420 K. Annealing of LT-grown Fe/Cu(100) films is proposed to provide smooth surfaces for Cu/Fe/Cu(100) sandwich preparations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Müller, S., Bayer, P.. Reischl, C.. Heinz, K.. Feldmann, B.. Zillgen, H.. and Wuttig, M.. Phys. Rev. Lett. 74, 765 (1995).Google Scholar
2. Steigerwald, D.A., Jacob, I. and Egelhoff, W.F.. Surf. Sei. 202. 472 (1988).Google Scholar
3. Pierce, D.T.. Stroscio, J.A.. Unguris, J.. and Celotta, R.J.. Phys. Rev. B. 49. 14564 (1994)Google Scholar
4. Zillgen, H.. Feldmann, B., Wuttig, M.. Surf. Sci. 321, 32 (1994).Google Scholar
5. Swartzendruber, L.J., Bennett, L.H.. Kief, M.T.. and Egelhoff, W.F.. Mat. Res. Soc. Symp. Proc. 313, 237 (1993).Google Scholar
6. Weiss, D., Mentz, E., Bauer, A., and Kaindl, G., to be published.Google Scholar
7. Mentz, E., Bauer, A., Günther, T., and Kaindl, G.. Phys. Rev. Lett., submitted.Google Scholar
8. Mentz, E., Weiss, D., Bauer, A., and Kaindl, G., J. Appl. Phys‥ in press.Google Scholar
9. Kalki, K.. Chambliss, D. D.. Johnson, K. E.. Wilson, R. J., and Chiang, S.. Phys. Rev. B 48, 18344 (1993).Google Scholar
10. Sander, D.. Skcomski, R.. Schmidthals, C.. Enders, A.. and Kirschner, J.. Phys. Rev. Lett. 77, 2566 (1996).Google Scholar
11. Dongqi Li. Freitag, M.. Pearson, J.. Qiu, Z. Q.. and Bader, S. D.. Phys. Rev. Lett. 72. 3112 (1994).Google Scholar
12. Shen, J.. Giergiel, J.. Schmid, A.K.. Kirschner, J.. Surf. Sci. 328. 32 (1995).Google Scholar