Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-15T06:54:46.082Z Has data issue: false hasContentIssue false

Spontaneous Raman Scattering for Gas Phase Diagnostics

Published online by Cambridge University Press:  22 February 2011

Michael C. Drake*
Affiliation:
Physical Chemistry Department, General Motors, Research Laboratories, Warren MI. 48090-9055.
Get access

Abstract

The use of spontaneous rotational and vibrational Raman scattering for nonperturbing measurements of temperature and gas phase concentrations in combustion and in materials processing is reviewed. Theory of Raman intensities is briefly discussed and examples of Raman scattering from metal halide vapors in high temperature furnaces, laminar flames, and turbulent flames are given to demonstrate its capabilities and limitations. At present spontaneous Raman scattering is the only method which can provide simultaneous nonperturbing measurements of temperature and many species concentrations with high spatial (≤ 0.1 mm3) and temporal (≤ 1μs) resolution. Rotational Raman scattering is generally preferred for low temperature measurements (≤ 1200 K), and vibrational Raman scattering is better for measurements of higher temperatures and of multiple-species concentrations. The disadvantages of Raman scattering stem for the weakness of the nonresonant Raman interaction which limits its sensitivity to major species concentrations, renders it vulnerable to interferences from other sources of visible radiation, and requires high powered lasers and sensitive detectors. Data from Raman scattering measurements, particularly when coupled with data from other laser diagnostic techniques and when compared to computer model calculations, have led to a better understanding of the complex interactions between fluid mechanics and chemical reactions which can govern the operation of turbulent combustors or chemical flow reactors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. First measured experimentally by Raman, C.V., Nature 121, 619 (1928); predicted earlier by A. Smekal, Naturwiss. 11, 873 (1923).Google Scholar
2. Lapp, M., Penney, C.M., and Goldman, L.M., Science 175, 1112 (1972).Google Scholar
3. Lapp, M. and Penney, C.M. (Eds.) Laser Raman Gas Diagnostics, Plenum Press, New York, 1974.Google Scholar
4. Eckbreth, A.C., Laser Diagnostics for Combustion Temperature and Species, Abacus Press, Cambridge, 1988.Google Scholar
5. Bechtel, J.H., Dasch, C.J., and Teets, R.E., in Laser Applications, vol.5, p. 129, 1984.Google Scholar
6. Drake, M.C. and Rosenblatt, G.M., in Characterization of High Temperature Vapors and Gases, Vol.1, Hastie, J.W. (Ed.), National Bureau of Standards Special Publication 561/1, Washington D.C., p. 609 (1979).Google Scholar
7. Laurendeau, N.M., Temperature Measurements by Light-Scattering Methods, 1987 ASME Heat Transfer Conference. Accepted for publication in Prog. Energy Combust. Sci..Google Scholar
8. Drake, M.C., Asawaroengchai, C., Drapcho, D.L., Viers, K.D., and Rosenblatt, G.M., in Temperature: Its Measurement and Control in Science and Industry, Vol.5, Schooley, J.F. (Ed.), American Institute of Physics, New York, p. 621 (1982).Google Scholar
9. Drake, M.C., Lapp, M., and Penney, C.M., in Temperature: Its Measurement and Control in Science and Industry, Vol.5, Schooley, J.F. (Ed.), American Institute of Physics, New York, p. 631 (1982).Google Scholar
10. Cheung, L.M., Bishop, D.M., Drapcho, D.L., and Rosenblatt, G.M., Chem. Phys. Lett. 80, 445 (1981). 216Google Scholar
11. Drake, M.C. and Rosenblatt, G.M., Combust. Flame 33, 179 (1978).Google Scholar
12. Drake, M.C., Asawareongchai, C., and Rosenblatt, G.M., in Laser Probes for Combustion Chemistry, Crosley, D.R. (Ed.), American Chemical Society, Washington D.C., p. 231 (1980).Google Scholar
13. Breiland, W.G. and Ho, P., in Proceedings of the Ninth International Conference on Chemical Vapor Deposition, McD. Robinson, C.H.J. van den Brekel, Cullen, G.W., Blocher, J.M., and Rai-Choudhury, P. (Eds.), The Electrochemical Society, Pennington, N.J., p. 44 (1984).Google Scholar
14. Breiland, W.G., Coltrin, M.E., and Ho, P., J. Appl. Physics 59, 3267 (1986).Google Scholar
15. Hill, R.A., Peterson, C.W., Mulac, A.J., and Smith, D.R., J. Quant. Spectros. Radiat. Transfer 16, 953 (1976).Google Scholar
16. Drake, M.C., Rosasco, G.J., Schneggenburger, R. and Nolen, R.L. Jr, J. Appi. Physics 50, 7894 (1979).Google Scholar
17. Drake, M.C. and Hastie, J.W., Combust. Flame 40, 201 (1981).Google Scholar
18. Leyendecker, G., Doppelbauer, J., Bauerle, D., Geittner, P., and Lydtin, H., Appl. Phys. A 30, 237 (1983).Google Scholar
19. Doppelbauer, J., Leyendecker, G., and Bauerle, D., Appl. Phys. B33, 141 (1984).Google Scholar
20. Leyendecker, G., Doppelbauer, J., and Bauerle, D. in Laser Processing and Diagnostics, Bauerle, D. (Ed.), Springer-Verlag, New York, p.504, 1984.Google Scholar
21. Williams, W.D., Powell, H.M., McGuire, R.L., Price, L.L., Jones, J.H., Weaver, D.P., and Lewis, J.W.L., in Turbulent Combustion, Kennedy, L.A. (Ed.), Vol.58 in Progress in Astro. and Aero., American Institute of Aero. and Astro., New York, p. 273 (1977).Google Scholar
22. Smith, J.R. and Giedt, W.H., Intl. J. Heat Mass Transfer 20, 899 (1977).Google Scholar
23. Kreutner, W., Stricker, W., and Just, Th., Appl. Spectros. 41, 98 (1987).Google Scholar
24. Aeschliman, D.P., Cummings, J.C., and Hill, R.A., J. Quant. Spectrosc. Radiat. Transfer 21, 293 (1979).Google Scholar
25. Setchell, R.E. and Miller, J.A., Combust. Flame 33, 23 (1978).Google Scholar
26. Drake, M.C., Grabner, L.H., and Hastie, J.W., in Characterization of High Temperature Vapors and Gases, Vol.1, Hastie, J.W. (Ed.), National Bureau of Standards Special Publication 561/1, Washington, D.C., p. 1105 (1979).Google Scholar
27. Smith, J.E. Jr and Sedgwick, T.O., Letters in Heat Mass Transfer 2, 329 (1975).CrossRefGoogle Scholar
28. Stephenson, D.A., Seventeenth Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, Pa., p. 993 (1979).Google Scholar
29. Bechtel, J.H., Appl. Optics 18, 2100 (1979).Google Scholar
30. Drake, M.C., Lapp, M., Penney, C.M., Warshaw, S., and Gerhold, B.W., Eighteenth Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, Pa., p. 1521 (1981).Google Scholar
31. Drake, M.C., Bilger, R.W., and Starner, S.H., Nineteenth Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, Pa., p. 459 (1983).Google Scholar
32. Dibble, R.W., Masri, A.R., and Bilger, R.W., Combust. Flame 67, 189 (1987).Google Scholar
33. Bouix, J., Berthet, M.P., Boubehira, M., Dazord, J., and Vincent, H., J. Electrochemical Soc. 129, 2338 (1982).Google Scholar
34. Dasch, C.J. and Bechtel, J.H., Optics Lett. 6, 36 (1981).Google Scholar
35. Blint, R. J. and Bechtel, J. H., Combust. Sci. Tech. 27, 87 (1982).CrossRefGoogle Scholar
36. Drake, M.C., Twenty-Second Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, Pa., in press (1988).Google Scholar
37. Breiland, W.G. and Kushner, M.J., Appl. Phys. Lett. 42, 395 (1983).Google Scholar
38. Coltrin, M.E., Kee, R.J., and Miller, J.A., J. Electrochemical Soc. 131, 425 (1984).Google Scholar