Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-01T11:45:21.944Z Has data issue: false hasContentIssue false

Stability Improvement of Polymer Based Solar Cells by Thermally Evaporated Cr2O3 Interfacial Layer

Published online by Cambridge University Press:  17 June 2011

Mingdong Wang
Affiliation:
Department of Electronic Engineering, and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong
Fangyan Xie
Affiliation:
Instrumental Analysis & Research Center, Sun Yat-Sen (Zhongshan) University, Guangzhou, P. R. China
Shizhao Zheng
Affiliation:
Department of Physics, The Chinese University of Hong Kong, Hong Kong, China
Jianbin. Xu*
Affiliation:
Department of Electronic Engineering, and Materials Science and Technology Research Center, The Chinese University of Hong Kong, Hong Kong
Get access

Abstract

We report on Cr2O3 layer by thermal evaporation of Cr2O3 powder as cathode interfacial layer to improve the stability in air for the bulk heterojunction solar cells of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). Devices with Cr2O3 interfacial layers show higher power conversion efficiency (PCE) and stability than those without interfacial layer. Devices with Cr2O3 show improved stability approximately 100 times than that of devices without interfacial layer or with LiF interfacial layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Park, S. H., Roy, A., Beaupre, S., Cho, S., Coates, N., Moon, J. S., Moses, D., Leclerc, M., Lee, K., Heeger, A. J., Nat. Photonics 3, 297 (2009).Google Scholar
[2] Chen, H.Y., Hou, J., Zhang, S., Liang, Y., Yang, G., Yang, Y., Yu, L., Wu, Y., Li, G., Nat. Photonics 3, 649 (2009).Google Scholar
[3] Cai, W., Gong, X., Cao, Y., Sol. Energy Mater. Sol. Cells 94, 114 (2010)Google Scholar
[4] Xue, J., Rand Barry, P., Uchida, S.; Forrest, S. R.. J. Appl. Phys. 98, 124903 (2005).Google Scholar
[5] Wei, H.Y, Huang, J. H., Ho, K. C., Chu, Chih-Wei, ACS Appl. Mater. Interfaces 5, 1281 (2010).Google Scholar
[6] Kuwabara, T., Kawahara, Y., Yamaguchi, T., Takahashi, K., ACS Appl. Mater. Interfaces, 10, 2107 (2009).Google Scholar
[7] Tromholt, T., Gevorgyan, S. A., Jørgensen, M., Krebs, F. C., Kristian, O. S., ACS Appl. Mater. Interfaces, 1, 2768 (2009).Google Scholar
[8] Shaheen, S. E., Jabbour, G. E., Morrell, M. M., Kawabe, Y., Kippelen, B., Peyghambarian, N., Nabor, M. F., Schlaf, R., Mash, E. A., Armstrong, N. R., J. Appl. Phys.84, 2324 (1998).Google Scholar
[9] Hung, L. S., Zhang, R. Q., He, P., Mason, M. G., J. Phys. D: Appl. Phys. 35, 103 (2002).Google Scholar
[10] Bharathan, J. M., Yang, Y., J. Appl. Phys. 84, 3207 (1998).Google Scholar
[11] Reese, M. O., White, M. S., Rumbles, G., Ginley, D. S., Shaheen, S. E., Appl. Phys. Lett. 92, 053307 (2008).Google Scholar
[12] Yoon, S. J., Park, J. H., Lee, , Park, H.K., Ok, O., Appl. Phys. Lett. 92, 143504 (2008).Google Scholar
[13] Kim, J.Y., Kim, S. H., Lee, H. H., Lee, K., Ma, W., Gong, X., Heeger, A. J., Adv. Mater. 18, 572 (2006).Google Scholar
[14] Kyaw, A. K., Sun, X. W., Jiang, C. Y., Lo, G. Q., Zhao, D. W., Kwong, D. L., Appl. Phys. Lett. 93, 221107 (2008).Google Scholar
[15] Chen, F.C., Wu, J.L., Yang, S. S., Hsieh, K.-H., Chen, W. C., J. Appl. Phys. 103, 103721 (2008).Google Scholar
[16] Weaver, J. F., Hagelin-Weaver, H. A. E., Hoflund, G. B., Salaita, G. N., Appl.Surf. Sci. 252, 7895 (2006).Google Scholar
[17] Barshilia, H. C., Selvakumar, N., Rajam, K. S., Biswas, A., J. Appl. Phys. 103, 023507 (2008).Google Scholar
[18] Pokhrel, S., Simion, C. E., Quemenera, V., Barsan, N., Weimar, U., Sens. Actuators B 133,78 (2008).Google Scholar
[19] Xu, Y., Schoonen, M. A. A., American Mineralogist 85, 543 (2000).Google Scholar
[20] Wang, M.D., Tang, Q., An, J., Xie, F. Y., Chen, J., Zheng, S. Z., Wong, K. Y., Miao, Q., Xu, J. B., ACS Appl. Mater. Inter. 2, 2699 (2010).Google Scholar
[21] Krebs, F. C., Tromholt, T., Jørgensen, M., Nanoscale, 2, 873 (2010).Google Scholar
[22] Krebs, F. C., Nielsen, T. D., Fyenbo, J., Wadstrøm, M., Pedersen, M. S., Energy Environ. Sci. 3, 512 (2010).Google Scholar
[23] Zimmermann, B., Wurfel, U., Niggemann, M., Solar Energy Materials & Solar Cells 93, 491 (2009).Google Scholar
[24] Nam, C.Y., Su, D., Black, C. T., Adv. Funct. Mater. 19, 1 (2009).Google Scholar
[25] Lögdlund, M., Bredas, J. L., J. Chem. Phys. 101, 4357 (1994).Google Scholar
[26] Jørgensen, M., Norrman, K., Krebs, F. C., Sol. Energy Mater. Sol. Cells 92, 686 (2008).Google Scholar
[27] Norrman, K., Krebs, F. C., Sol. Energy Mater. Sol. Cells, 90, 213 (2006).Google Scholar