Published online by Cambridge University Press: 15 February 2011
Stacking faults on (001) in MoSi2 and WSi2 with the Cllb structure have been characterized by transmission electron microscopy (TEM), using their single crystals grown by the floating-zone method. Although WSi2 contains a high density of stacking faults, only several faults are observed in MoSi2. For both crystals, (001) faults are characterized to be of the Frank-type in which two successive (001) Si layers are removed from the lattice, giving rise to a displacement vector parallel to [001]. When the displacement vector of faults is expressed in the form of R=l/n[001], however, their n values are slightly deviated from the exact value of 3, because of dilatation of the lattice in the direction perpendicular to the fault, which is caused by the repulsive interaction between Mo (W) layers above and below the fault. Matching of experimental high-resolution TEM images with calculated ones indicates n values to be 3.12 ± 0.10 and 3.34 ± 0.10 for MoSi2 and WSi2, respectively.