Published online by Cambridge University Press: 21 March 2011
Thin copper films have been deposited on single crystal copper substrates and characterized using a UHV Scanning Tunneling Microscope to probe the effect of atomic insertions during hyperthermal ion deposition. At low temperatures, atomic insertions are predicted to provide a net downhill current that offsets the roughening effect due to uphill “Schwoebel” currents leading to a net smoothing of the surface. Films have been grown at several different energies targeted to observe a crossover from insertion driven smoothing to adatom-vacancy dominated roughening. Copper thin films are deposited near 20 eV using a mass selected ion deposition system that allows precise control (+/− 2 eV) over the energy of constituent atoms. Experimental observations are compared with a sophisticated Kinetic Monte Carlo and Molecular Dynamics hybrid (KMC-MD) simulation.