Hostname: page-component-5f745c7db-j9pcf Total loading time: 0 Render date: 2025-01-06T14:55:54.281Z Has data issue: true hasContentIssue false

Stress and Microstructure Evolution in Compositionally Graded Al1-xGaxN Buffer Layers for GaN Growth on Si

Published online by Cambridge University Press:  01 February 2011

Xiaojun Weng
Affiliation:
sxr36@psu.edu, Penn State University, 101 MRI Building, 230 Innovation Blvd, University Park, PA, 16802, United States
Srinivasan Raghavan
Affiliation:
srx36@psu.edu
Elizabeth C Dickey
Affiliation:
ecd10@psu.edu
Joan M Redwing
Affiliation:
jmr31@psu.edu
Get access

Abstract

We have studied the evolution of stress and microstructure of compositionally graded Al1-xGaxN (0 ≤ x ≤1) buffer layers on (111) Si substrates with varying thicknesses. In-situ stress measurements reveal a tensile-to-compressive stress transition that occurs near the half-thickness in each buffer layer. Cross-sectional transmission electron microscopy (TEM) shows a significant reduction in threading dislocation (TD) density in the top half of the buffer layer, suggesting that the compressive stress enhances the threading dislocation annihilation. The composition of the buffer layers varies linearly with thickness, as determined by X-ray energy dispersive spectrometry (XEDS). The composition grading-induced compressive stress offsets the tensile stress introduced by microstructure evolution, thus yielding a tensile-to-compressive stress transition at x ≈ 0.5.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Raghavan, S. and Redwing, J. M., J. Appl. Phys. 98, 023514 (2005).Google Scholar
2. Raghavan, S. and Redwing, J. M., J. Appl. Phys. 98, 023515 (2005).Google Scholar
3. Able, A., Wegscheider, W., Engl, K., and Zweck, J., J. Cryst. Growth 276, 415 (2005).CrossRefGoogle Scholar
4. Kim, M. H., Do, Y.-G., Kang, H. C., Noh, D. Y., and Park, S.-J., Appl. Phys. Lett. 79, 2713 (2001).CrossRefGoogle Scholar
5. Marchand, H., Zhao, L., Zhang, N., Moran, B., Coffie, R., Mishra, U. K., Speck, J. S., DenBaars, S. P., and Freitas, J. A., J. Appl. Phys. 89, 7846 (2001).CrossRefGoogle Scholar
6. Stoney, G. G., Proc. R. Soc. London, Ser. A 82, 172 (1909).Google Scholar
8. Raghavan, S. and Redwing, J. M., J. Appl. Phys. 96, 2995 (2004).CrossRefGoogle Scholar
9. Follstaedt, D.M., Lee, S.R., Provencio, P.P., Allerman, A.A., Floro, J.A., and Crawford, M.H., Appl. Phys. Lett. 87, 121112 (2005).CrossRefGoogle Scholar
10. Raghavan, S., Weng, X., Dickey, E.C., and Redwing, J.M., unpublished.Google Scholar
11. Cantu, P., Wu, F., Waltereit, P., Keller, S., Romanov, A.E., Mishra, U.K., DenBaars, S.P., and Speck, J.S., Appl. Phys. Lett. 83, 674 (2003).CrossRefGoogle Scholar
12. Romanov, A.E. and Speck, J.S., Appl. Phys. Lett. 83, 2569 (2003).CrossRefGoogle Scholar
13. Weng, X., Raghavan, S., Dickey, E.C., and Redwing, J.M., unpublished.Google Scholar
14. Williams, D.B. and Carter, C.B., Transmission Electron Microscopy (Plenum Press, New York, 1996) p. 600.CrossRefGoogle Scholar