Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-15T07:13:18.294Z Has data issue: false hasContentIssue false

Stress Driven Instability in Non-Hydrostatically Stressed Crystals and its Role in the Problems of Crystalline Thin Films

Published online by Cambridge University Press:  22 February 2011

Michael A. Grinfeld*
Affiliation:
Department of Mathematics, Rutgers University, New Brunswick, NJ 08903
Get access

Abstract

It was demonstrated in [1] that, in the absence of surface tension aflat boundary of non-hydrostatically stressed elastic solids is always unstable with respect to “mass rearrangement”. The physical mechanisms of the rearrangement can be different, for instance, a)melting-freezing or vaporization-sublimation processes at liquid-solid or vapor-solid phase boundaries, b»surface diffusion of particles along free or interfacial boundaries, b)adsorption-desorbtion of the atoms in epitaxial crystal growth, etc… We discuss the role of this instability in the problems of epitaxy and, in particular, the opportunities delivered by this instability for explanation of the recently discovered phenomena of the dislocation-free Stranski-Krastanow pattern of growth [2]. These phenomena cannot be interpreted in the framework of traditional viewpoints since, according to the classical theory, the Stranski-Krastanow pattern is a result of proliferation of the misfit dislocation appearing on the interface “crystalline film-substratum” [3].

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Grinfeld, M.A., Doki. AN SSSR 283, 1139 (1985) [Doklady, Earth Sci. Sect. 283, 27 (1985)]; Doki. AN SSSR 290, 1358 (1986) [Sov. Phys. Doki. 31, 831]; Mekh. Zhidk. Gaza 1987 (2), 3 [Fluid Dyn. 22, 169]; Prikl. Mat. Mekh. 51, 628 (1987) [PMM USSR, 51, 489 (1987)].Google Scholar
2. Asai, M., Ueba, H., Tatsuyma, C., J. Appl. Phys. 58, 2577 (1985);CrossRefGoogle Scholar
Eaglesham, D.J., Cerullo, M., Phys. Rev. Lett., 64, 16, 1943 (1990);Google Scholar
Snyder, C.W., Orr, B.G., Kessler, D., Sander, L.M., Phys. Rev. Lett., 66, 3032 (1991);CrossRefGoogle Scholar
Guha, S., Madhukar, A., Rajkumar, K.C., Appl. Phys. Lett., 57, 2110 (1990);Google Scholar
LeGoues, F.K., Copel, M., Tromp, R.M., Phys. Rev. B, 42, 11690 (1990);Google Scholar
Williams, A.A., Thornton, J.M.C., Macdonald, J.E., van Silfhout, R.G., van der Veen, J.F., Finney, M.S., Johnson, A.D., Norris, C., Phys. Rev. B, 43, 5001 (1991).Google Scholar
3. van der Merwe, J.H., J. Appl. Phys. 34. 117 (1963);Google Scholar
Matthews, J.W. and Blakeslee, , J. Cryst. Growth, 27, 118 (1974);Google Scholar
Gilmer, G.H. and Grabów, M.H., J. Metals, June, 1923 (1987);Google Scholar
Bruinsma, R. and Zangwill, A., Europhys. Lett. 4 729 (1987);Google Scholar
Nix, W., Metall. Trans. 20A, 2217 (1989).Google Scholar
4. Grinfeld, M.A., Thermodynamic Methods in the Theory of Heterogeneous Systems (Longman, 1991).Google Scholar
5. Grinfeld, M.A., The Stress Driven Instabilities in Crystals: Mathematical Models and Physical Manifestations. IMA Preprint Series #819, June (1991).Google Scholar
6. Nozieres, P., Growth and Shape of Crystals. (Lectures given at Beg-Rohu(Brittany) Summer School 1989, mimeographed).Google Scholar
7. Caroli, B., Caroli, C., Roulet, B., Voorhees, P.W., Acta Metall. 37, 257 (1989);CrossRefGoogle Scholar
Srolovitz, D.J., Acta Metall. 37, 621 (1989);Google Scholar
Leo, P.H. and Sekerka, R.F., Acta Metall. 37, 3119 (1989).Google Scholar