Published online by Cambridge University Press: 22 February 2011
It has recently been shown that the front surface region of the silicon lattice is severely strained during pulsed laser irradiation. This uniaxial strain reduces the symmetry of the front surface region, resulting in additional shifts and splittings of the phonon frequency and changes in the Raman scattering tensor. It is shown that, for the case of pulsed laser irradiation, the phonon frequency is increased, and the 3-fold degenerate optical phonon is split into a singlet and a doublet. The changes in the Raman scattering tensor make it non-symmetric, and generally invalidate the technique used by Compaan et al. to determine the cross section experimentally. The complications introduced by the presence of stress during pulsed laser annealing, coupled with the temperature dependence of the optical and Raman tensors, make a simple interpretation of the Stokes to anti-Stokes ratio in terms of lattice temperature extremely unreliable.