Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T07:01:38.955Z Has data issue: false hasContentIssue false

Strong Deviation Of The Lattice Parameter In Si1-x-yGexCy Epilayers From Vegard's Rule

Published online by Cambridge University Press:  10 February 2011

J. Stangl
Affiliation:
Inst. for Semiconductor Physics, Kepler-University Linz, Altenbersgerstr. 69, A-4040 Linz, Austria
S. Zerlauth
Affiliation:
Inst. for Semiconductor Physics, Kepler-University Linz, Altenbersgerstr. 69, A-4040 Linz, Austria
F. Schäffler
Affiliation:
Inst. for Semiconductor Physics, Kepler-University Linz, Altenbersgerstr. 69, A-4040 Linz, Austria
G. Bauer
Affiliation:
Inst. for Semiconductor Physics, Kepler-University Linz, Altenbersgerstr. 69, A-4040 Linz, Austria
M. Berti
Affiliation:
INFM at the Physics Dept. University of Padova, Via Marzolo 8, I-35131 Padova, Italy
D. De Salvador
Affiliation:
INFM at the Physics Dept. University of Padova, Via Marzolo 8, I-35131 Padova, Italy
A. V. Drigo
Affiliation:
INFM at the Physics Dept. University of Padova, Via Marzolo 8, I-35131 Padova, Italy
F. Romanato
Affiliation:
INFM at the Physics Dept. University of Padova, Via Marzolo 8, I-35131 Padova, Italy
Get access

Abstract

From the comparison of precise determinations of the Ge and C contents of a series of Si1-x-yGexCy epilayer samples (x < 0.18, y < 0.02) by Rutherford and resonant backscattering experiments and x-ray diffraction, the variation of the Si1-x-yGexCy lattice spacing as a function of C content is determined. A significant negative deviation from Vegard's rule is observed, in agreement with theoretical predictions by Kelires.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

«1» Brunner, K., Eberl, K., Winter, W., Phys.Rev.Lett. 76, 303 (1996).Google Scholar
«2» Houghton, D. C., Aers, G. C., Rowell, N. L., Brunner, K., Winter, W., Eberl, K., Phys.Rev.Lett. 78, 2441 (1997).Google Scholar
«3» Osten, H. J., Kim, M., Pressel, K., Zaumseil, P., J. Appl. Phys. 80, 6711 (1996).Google Scholar
«4» Croke, E. T., Hunter, A.T., Ahn, C. C., Laursen, T., Chandrasekhar, D., Bair, A. E., Smith, D. J., Mayer, J. W., J. Cryst. Growth 175–176, 486 (1997).Google Scholar
«5» Dismukes, J. P., Ekstrom, L., Paff, R. J., J. Phys. Chem. 68, 3021 (1964).Google Scholar
«6» Kelires, P. C., Phys. Rev. B75, 8785 (1997), Phys. Rev. Lett. 75, 1114, (1995).Google Scholar
«7» Leavitt, J. A., McIntyre, L. C. Jr., Stoss, P., Oder, J. G., Ashbaugh, M. D., Dezfouly-Arjomandy, B., Yang, Z. M., Lin, Z., Nucl. Instr. Meth. in Phys. Res. B40/41, 776 (1989).Google Scholar
«8» Endisch, D., Osten, H. J., Zaumseil, P., Zinke-Allmang, M., Nucl. Inst. Meth. in Phys. Res. B100, 125 (1995).Google Scholar
«9» Feng, Y., Zhou, Z., Zhou, Y., Zhao, G., Nucl. Instr. Meth. in Phys. Res. B86, 255 (1995).Google Scholar
«10» Berti, M. et al., subm. to Nucl. Inst. Met. in Phys. Res.Google Scholar
«11» Berti, M., De Salvador, D., Drigo, A. V., Romanato, F., Stangl, J., Zerlauth, S., Schdffler, F., Bauer, G., Appl. Phys. Lett. 72, 1 (1998)Google Scholar
«12» Zerlauth, S., Penn, C., Seyringer, H., Schäffler, F., Appl. Phys. Lett. 71, 3826 (1997)Google Scholar
«13» Handbook of Modern Ion Beam Materials Analysis, Tesmer, J. R. and Nastasi, M. editors. Materials Research Society, Pittsburg (USA), 1995 Google Scholar
«14» Martins, J., Zunger, A., Phys.Rev.Lett. 56, 1400 (1986).Google Scholar
«15» Fischer, G. G., Zaumseil, P., J. Phys. D: Appl. Phys. 28, A109 (1995).Google Scholar