Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-13T14:22:29.056Z Has data issue: false hasContentIssue false

Structural and Magneto-Electric Properties of Pulsed Laser Deposited Ferroelectric/Ferromagnetic Heterostructure

Published online by Cambridge University Press:  31 January 2011

Ricardo Martinez
Affiliation:
rmvphysics@yahoo.com, University of Puerto Rico, Department of Physics, San Juan, Puerto Rico
Ashok Kumar
Affiliation:
ashok553@gmail.com, University of Puerto Rico, Department of Physics, San Juan, Puerto Rico
Ratnakar Palai
Affiliation:
r.palai@gmail.com, University of Puerto Rico, Physics, San Juan, Puerto Rico
Ram S. Katiyar
Affiliation:
rkatiyar@upracd.upr.clu.edu, University of Puerto Rico, Department of Physics, San Juan, Puerto Rico
Get access

Abstract

Asymmetric superlattices (SLs) with ferromagnetic La0.7Sr0.3MnO3 (LSMO) and ferroelectric Ba0.7Sr0.3TiO3 (BST) as constitutive layers were fabricated on conducting LaNiO3 (LNO) coated (001) oriented MgO substrates using pulsed laser deposition (PLD). The crystallinity, ferroelectric and magnetic properties of the SLs were studied over a wide range of temperatures and frequencies. The structure exhibited ferromagnetic behavior at 300K, and ferroelectric behavior over a range of temperatures between 100K and 300K. The dielectric response as a function of frequency obeys normal behavior below 300 K, whereas it follows Maxwell–Wagner model at elevated temperatures. The effect of ferromagnetic LSMO layers on ferroelectric properties of the SL indicated strong influence of the interfaces. The asymmetric behavior of ferroelectric loop and the capacitance-voltage relationship suggest development of a built field in the SLs due to high strain across the interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]. Wang, D. Y., Wang, J., Zhou, X.Y, Chan, H.L. and Choy, C.L. Appl. Phys. Lett. 86. 212904. 2005.Google Scholar
[2]. Miao, J., Cao, L., Yuan, J., Chen, W., Yang, H., Xu, B., Qiu, X, Zhao, B.. J. Appl. Phys. 101, 084101. 2007 Google Scholar
[3]. Mitsugi, F., Ikegami, T., Ebihara, K., Narayan, J. and Grishin, A. M.. Mat. Res. Soc. Symp. Proc. Vol. 666. 2001.Google Scholar
[4]. Li, T., Wang, B., Dai, H., Du, Y., and Yan, H.. J. Appl. Phys. 98, 123505. 2005.Google Scholar
[5]. Martin, L. W., Crane, S P, Chu, Y. H, Holcomb, M B, Gajek, M, Huijben, M, Yang, C. H, Balke, N and Ramesh, R. J. Phys. Condens. Matter 20 (2008) 434220 (13pp).Google Scholar
[6]. Singh, M. P., Prellier, W., Mechin, L. and Raveau, B.. Appl. Phys. Lett. 88, 012903. 2006.Google Scholar
[7]. Miao, J., Cao, L., Yuan, J., Chen, W., Yang, H., Xu, B., Qiu, X., Zhao, B.. J. Cryst. Growth 276 (2005) 498506.Google Scholar
[8]. Matthews, S., Ramesh, R., Venkatesan, T. and Benedetto, J.. Science. 276 (1997). 238.Google Scholar
[9]. Shen, M., Ge, S. and Cao, W.. J. Phys. D: Appl. Phys. 34. 2001. pp 29352938.Google Scholar
[10]. Nagamuna, H., Inoue, Y., and Okamura, S. Integrated. Ferroelectrics. Vol 95. pp. 242247. 2007.Google Scholar
[11]. Huibin, L., Souyu, D., Zhenghao, C., Lei, Y., Yueliang, Z. and Guozhen, Y. Chin. Sci. Bull. Vol. 48 No. 13 13281330. 2003.Google Scholar
[12]. Zafar, S., Jones, R. E., Jiang, B., White, B., Kaushik, V., and Gillespie, S.. Appl. Phys. Lett. Vol 73. No 24. 1998.Google Scholar
[13]. Chaudhuri, A. R., Ranjith, R. and Krupanidhi, S. B.. Appl. Phys. Lett. 90, 122902. 2007.Google Scholar