Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T06:45:24.107Z Has data issue: false hasContentIssue false

Structural Band Gap Engineering

Published online by Cambridge University Press:  10 February 2011

Alexander A. Demkov
Affiliation:
Predictive Engineering Laboratory, Motorola, Inc. Mesa, AZ 85202 Department of Physics, Arizona State University, Tempe, AZ 85287
Otto F. Sankey
Affiliation:
Department of Physics, Arizona State University, Tempe, AZ 85287
M. Fuentes
Affiliation:
Department of Physics, Arizona State University, Tempe, AZ 85287 Departamento de Fisica Fundamental y Experimental, Universidad de La Laguna, E- 38204 La Laguna, Tenerife, Spain
Get access

Abstract

In this paper we discuss a novel approach to the band gap engineering of semiconductors Si, Ge, GaAs and AIN. We suggest that nanoporous polymorphs of these materials may exist which would offer a significant variation of the electronic band gap. Structurally, nanoporous semiconductors are related to the zeolitic nets, and a systematic procedure of generating these structures from the (4;2) nets is described. We use the ab initio total energy quantum molecular dynamics method Fireball96 to investigate the energetics and the electronic properties of these nanoporous or “expanded” semiconductor phases.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Haeringen, W. van, Bobbert, P.A., Backes, W.H., phys. stat. sol. (b) 202, 63 (1997).Google Scholar
2. Nesper, R., Vogel, K., Blochl, P., Angew. Chem. Int. Ed. Engl. 32, 701 (1993).Google Scholar
3. Adams, G.B., O'Keeffe, M., Demkov, A.A., Sankey, O.F., Huang, Y., Phys. Rev. B 49, 8048 (1994).Google Scholar
4. Demkov, A.A., Sankey, O.F., Gryko, J., McMillan, P.F., Phys. Rev. B 55, 6904 (1997)Google Scholar
5. Cros, C., Pouchard, M., Hagenmuller, P., Kasper, J.S., Bull. Soc. Chim. France 7, 2737 (1968).Google Scholar
6. Demkov, A.A., Ortega, J., Sankey, O.F., Grumbach, M., Phys. Rev. B 52, 1618 (1995).Google Scholar
7. Sankey, O.F., Demkov, A.A., Windl, W., Fritsch, J., Lewis, J.P., M. Fuentes-Cabrera, Int. J. Quantum Chem., XX (1997).Google Scholar
8. Grigorian, L., Fang, S., Eklund, P.C., Bulletin of the American Physical Society 42, 67 (1997).Google Scholar
9. Demkov, A., Sankey, O., Schmidt, K., Adams, G., O'Keeffe, M., Phys. Rev. B 50, 17 001 (1994).Google Scholar
10. Smelyansky, V., Tse, J., Chem. Phys. Lett. 264, 459 (1997).Google Scholar
11. Gryko, J., McMillan, P., Sankey, O., Phys. Rev. B 54, 3037 (1996).Google Scholar
12. Saito, S., Oshiyama, A., Phys. Rev B 51, 2628 (1995).Google Scholar
13. Demkov, A.A., Windl, W., Sankey, O.F., Phys. Rev. B 53, 11288 (1996).Google Scholar
14. Schuster, H., Westerhaus, W., Z. Naturforsch 30b, 805 (1975).Google Scholar
15. Greenwood, N., Eamshaw, A., Chemistry of the Elements, (Pergamon Press, Oxford, 1994) p. 295 Google Scholar
16. Fritsch, J. (private communication)Google Scholar