Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-04T00:08:11.161Z Has data issue: false hasContentIssue false

Structural Properties of Free-Standing 50 mm Diameter GaN Wafers with (1010) Orientation Grown on LiAlO2

Published online by Cambridge University Press:  01 February 2011

Jacek Jasinski
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720
Zuzanna Liliental-Weber
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720
Herbert-Paul Maruska
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720
Bruce H. Chai
Affiliation:
Crystal Photonics Inc., 5525 Benchmark Lane, Sanford, FL 32773
David W. Hill
Affiliation:
Crystal Photonics Inc., 5525 Benchmark Lane, Sanford, FL 32773
Mitch M. C. Chou
Affiliation:
Crystal Photonics Inc., 5525 Benchmark Lane, Sanford, FL 32773
John J. Gallagher
Affiliation:
Crystal Photonics Inc., 5525 Benchmark Lane, Sanford, FL 32773
Stephen Brown
Affiliation:
Crystal Photonics Inc., 5525 Benchmark Lane, Sanford, FL 32773
Get access

Abstract

(1010) GaN wafers grown on (100) face of γ-LiAlO2 were studied using transmission electron microscopy. Despite good lattice matching in this heteroepitaxial system, high densities of planar structural defects in the form of stacking faults on the basal plane and networks of boundaries located on prism planes inclined to the layer/substrate interface were present in these GaN layers. In addition, significant numbers of threading dislocations were observed. High-resolution electron microscopy indicates that stacking faults present on the basal plane in these layers are of low-energy intrinsic I1 type. This is consistent with diffraction contrast experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hellman, E.S., Liliental-Weber, Z., and Buchanan, D.N.F., MRS Interenet J. Nitride Res. 2, 30, (1997).Google Scholar
2. Waltereit, P., Brandt, O., Ramsteiner, M., Trampert, A., Grahn, H.T., Menniger, J., Reiche, M., Uecker, R., Reiche, P., Ploog, K.H., Physica Status Solidi A, 180, 133. (2000).Google Scholar
3. Waltereit, P., Brandt, O., Trampert, A., Grahn, H.T., Menniger, J., Ramsteiner, M., Reiche, M., Ploog, K.H., Nature, 406, 865, (2000).Google Scholar
4. Kuokstis, E., Chen, C. Q., Gaevski, M. E., Sun, W. H., Yang, J. W., Simin, G., Khan, M. Asif, Maruska, H. P., Hill, D. W., Chou, M. C., Gallagher, J. J., Chai, B., Appl. Phys. Lett., 81, 4130 (2002).Google Scholar
5. Maruska, H. P., Hill, D. W., Chou, M. C., Gallagher, J. J., Chai, B. H., Opto-Electronics Review, 11, 7 (2003)Google Scholar
6. Hull, D. and Bacon, D. J., “Introduction to Dislocations”, 3rd Ed., Intl. Series on Materials Science and Technology, (Oxford, New York, Beijing, Frankfurt, Sao Paulo, Sydney, Tokyo, Toronto: Pergamon Press, 1984).Google Scholar