Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T06:22:00.039Z Has data issue: false hasContentIssue false

Structures and Electronic Properties of Graphene with Vacancy Defects

Published online by Cambridge University Press:  22 May 2014

J. Sugimoto
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
K. Shintani
Affiliation:
Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
Get access

Abstract

The structures and electronic properties of graphene with defects consisting of one to six atomic vacancies are investigated using first-principles calculation. All of the geometrically possible initial structures of a movacancy or a multivacancy in graphene are equilibrated. The formation energies and electronic band structures for the equilibrated defective structures are calculated. It is suggested non-zero bandgaps may be induced in graphene by introducing some types of monovacancy or multivacancy although further checks regarding supercell size are necessary to ensure the present results.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., and Firsov, A. A., Nature 438, 197 (2005).CrossRefGoogle Scholar
Bartelt, N. C. and McCarty, K. F., MRS Bulletin 37, 1158 (2012).CrossRefGoogle Scholar
Wong, S. L., Huang, H., Chen, W., and Wee, A. T. S., MRS Bulletin 37, 1195 (2012).CrossRefGoogle Scholar
Avouris, P. and Xia, F., MRS Bulletin 37, 1225 (2012).CrossRefGoogle Scholar
Starke, U., Forti, S., Emtsev, K. V., and Coletti, C., MRS Bulletin 37, 1177 (2012).CrossRefGoogle Scholar
Gui, G., Li, J., and Zhong, J., Phys. Rev. B 78, 075435 (2008).CrossRefGoogle Scholar
Wang, Z. F., Li, Q., Zheng, H., Ren, H., Su, H., Shi, Q. W., and Chen, J., Phys. Rev. B 75, 113406 (2007).CrossRefGoogle Scholar
Pantelides, S. T., Puzyrev, Y., Tsetseris, L., and Wang, B., MRS Bulletin 37, 1187 (2012).CrossRefGoogle Scholar
Saito, M., Yamashita, K., and Oda, T., Jpn. J. Appl. Phys. 46, L1185 (2007).CrossRefGoogle Scholar
Lehtinen, O., Kotakoski, J., Krasheninnikov, A. V., Tolvanen, A., Nordlund, K., and Keinonen, J., Phys. Rev. B 81, 153401 (2010).CrossRefGoogle Scholar
Ugeda, M. M., Brihuega, I., Hiebel, F., Mallet, P., Veuillen, J.-Y., Gómez-Rodríguez, J. M., and Ynduráin, F., Phys. Rev. B 85, 121402(R) (2012).CrossRefGoogle Scholar
Banhart, F., Kotakoski, J., and Krasheninnikov, A. V., ACS Nano 5, 26 (2011).CrossRefGoogle Scholar
Kotakoski, J., Krasheninnikov, A. V., Kaiser, U., and Meyer, J. C., Phys. Rev. Lett. 106, 105505 (2011).CrossRefGoogle Scholar
Robertson, A. W., Montanari, B., He, K., Allen, C. S., Wu, Y. A., Harrison, N. M., Kirkland, A. I., and Warner, J. H., ACS Nano 7, 4495 (2013).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar