Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T06:47:06.558Z Has data issue: false hasContentIssue false

Study of Actinides Incorporation in Thorium Phosphate-Diphosphate/Monazite Based Ceramics

Published online by Cambridge University Press:  01 February 2011

Nicolas Clavier
Affiliation:
Groupe de Radiochimie, Institut de Physique Nucléaire, Bât 100, Université Paris-Sud, 91406 Orsay, France
Nicolas Dacheux
Affiliation:
Groupe de Radiochimie, Institut de Physique Nucléaire, Bât 100, Université Paris-Sud, 91406 Orsay, France
Renaud Podor
Affiliation:
LCSM, Université H. Poincaré – Nancy I, BP 239, 54506 Vandœuvre-les-Nancy, France
Philippe Le Coustumer
Affiliation:
Groupe de Radiochimie, Institut de Physique Nucléaire, Bât 100, Université Paris-Sud, 91406 Orsay, France
Get access

Abstract

Phosphate materials are usually considered as potential candidates to perform the immobilization of actinides coming from an advanced reprocessing of spent fuel in the field of an underground repository. Among them, Thorium Phosphate-Diphosphate (TPD) and monazites have been already extensively studied. The elaboration of TPD/monazite based materials was thus envisaged in order to immobilize simultaneously tri- and tetravalent actinides and a neutron absorber. Two chemical ways of synthesis were considered and the compounds were easily prepared in the powder and in the pellet form. A good chemical compatibility was found between TPD and monazite since the properties of both phosphates were kept in these composites. Moreover, the relative density of the pellets reached 90 – 95 % of the value calculated from XRD data. The normalized dissolution rates determined in acidic media did not exceed 5.10−4 g.m−2.day−1 which confirmed the very good durability of such materials during leaching tests.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Benard, P., Brandel, V., Dacheux, N., Jaulmes, S., Launay, S., Lindecker, C., Genet, M., Louër, D., Quarton, M., Chemistry of Materials, 8, 181 (1996).Google Scholar
2. Boatner, L.A., Rev. Miner. Geochem., 48 (2002).Google Scholar
3. Terra, O., Clavier, N., Dacheux, N., Podor, R., New J. Chem., 27, 957 (2003).Google Scholar
4. Dacheux, N., Podor, R., Brandel, V., Genet, M., J. Nucl. Mater., 252, 179 (1998).Google Scholar
5. Dacheux, N., Thomas, A.C., Brandel, V., Genet, M., J. Nucl. Mater., 257, 108 (1998).Google Scholar
6. Aloy, A.S., Kovarskaya, E.N., Kolsova, T.I., Samoylov, S.E., Rovnyi, S.I., Medvedev, G.M., Jardine, L.J., Proceedings of the 10th International Ceramics Congress, A.S.M.E., New York, USA, CD-ROM (2002).Google Scholar
7. Dacheux, N., Chassigneux, B., Brandel, V., Le Coustumer, P., Genet, M., Cizeron, G., Chem. Mater., 14, 2953 (2002).Google Scholar
8. Pichot, E., Dacheux, N., Emery, J., Chaumont, J., Brandel, V., Genet, M., J. Nucl. Mater., 289, 219 (2001).Google Scholar
9. Thomas, A.C., Dacheux, N., Le Coustumer, P., Brandel, V., Genet, M., J. Nucl. Mater., 281, 91 (2000).Google Scholar
10. Oelkers, E.H., Poitrasson, F., Chem. Geol., 191, 73 (2002).Google Scholar
11. Lessing, P.A., Erickson, A.W., J. Eur. Ceram. Soc., 23, 3049 (2003).Google Scholar
12. Mullica, D.F., Grossie, D.A., Boatner, L.A., Inorg. Chim. Acta, 105, 109 (1985).Google Scholar
13. Robisson, A.C., Dacheux, N., Aupiais, J., J. Nucl. Mater., 306, 134 (2002).Google Scholar
14. Sales, B.C., White, C.W., Boatner, L.A., Nucl. Chem. Waste Manag., 4, 281 (1983).Google Scholar
15. Thomas, A.C., Dacheux, N., Brandel, V., Le Coustmer, P., Genet, M., J. Nucl. Mater., 295, 249 (2001).Google Scholar
16. Poitrasson, F., Oelkers, E., Schott, J., Montel, J.M., Geochim. Cosmochim. Acta, to be published.Google Scholar
17. Saadi, M., Dion, C., Abraham, F., J. Sol. St. Chem., 150, 72 (2000).Google Scholar