Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T07:04:34.219Z Has data issue: false hasContentIssue false

Study of Defect Numbers and Distributions in Pecvd S102 Transparent Barrier Coatings on Pet

Published online by Cambridge University Press:  10 February 2011

A. S. Da Silva Sobrinho
Affiliation:
Groupe des Couches Minces (GCM) and Department of Engineering Physics, and Materials Engineering - École Polytechnique, Montréal, QC H3C 3A7, Canada.
G. Czeremuszkin
Affiliation:
Polyplasma Inc., 3744 Jean Brillant, Montréal, QC H3T IPI, Canada.
M. Latrèche
Affiliation:
Polyplasma Inc., 3744 Jean Brillant, Montréal, QC H3T IPI, Canada.
M. R. Wertheimer
Affiliation:
Groupe des Couches Minces (GCM) and Department of Engineering Physics, and Materials Engineering - École Polytechnique, Montréal, QC H3C 3A7, Canada.
Get access

Abstract

Transparent ceramic barrier films are the object of increasing interest in packaging, pharmaceutical, optical, and electronics industries, since they can reduce the permeation rate of oxygen (OTR) and/or water vapor (WVTR) by several orders of magnitude. We prepare silicon dioxide (Si02) or nitride (“SiN”) barrier layers by plasma-enhanced chemical vapor deposition (PECVD). We have shown that OTR (and WVTR) decrease with increasing coating thickness, d, to a certain asymptotic minimum value, when d ≥ 50 nm; the residual permeation is attributed to the presence of microscopic defects in the coating. Since the coatings are transparent and very thin, the detection of defects and the analysis of their origin are very difficult.

We have recently developed techniques based on reactive ion etching (RIE) in oxygen plasma to render visible micrometer- or sub-micrometer-sized defects in transparent barrier coatings on transparent polymers. These techniques can be used to better understand the origins of defects in these coatings on a microscopic scale, as well as for mapping and counting defect density on a macroscopic scale (tens of cm2 or more).

In this article we present a correlation between measured 02 transmission rate (OTR) values and the number density and size distribution of defects in SiO2 barrier coatings. Excellent agreement between measured and calculated OTR values allows us to confirm that residual OTR is indeed controlled by pinhole defects; our results also compare well with published data for aluminized PET.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

«1» Sobrinho, A. S. da Silva, Latrèche, M., Gzeremuszkin, G., Klemberg-Sapieha, J. E., and Wertheimer, M. R., J. Vac. Sci. Technol. A, 16 3190 (1998).Google Scholar
«2» Chatham, H., Surface and Coatings Technol. 78, 1 (1996).Google Scholar
«3» Jamieson, E. H. H. and Windle, A. H., J. Mater. Sci. 18, 64 (1983).Google Scholar
«4» Egitto, F. D., Vukanovic, V., and Taylor, G. N., Chap. 5 in Plasma Deposition Treatment andEtching of Polymers, d'Agostino, R. (Ed.), Academic Press, Boston (1990).Google Scholar
«5» Wertheimer, M. R., Czeremuszkin, G., Cerny, J., Klemberg-Sapieha, J. E., Martinu, L., and Kremers, W., Proc. 7th Int. Symp. on Materials in Space Environment, Toulouse, France, ESA SP-399, p. 393 (1997).Google Scholar
«6» Zimcik, D. G. and Maag, C. R., AIAA J. of Spacecraft and Rockets 25, 162 (1988).Google Scholar
«7» Sobrinho, A. S. da Silva, Gzeremuszkin, G., Latreche, M., and Wertheimer, M. R., Appl.Phys. A, (in press).Google Scholar
«8» Sobrinho, A. S. da Silva, Gzeremuszkin, G., Latreche, M., Dennler, G., and Wertheimer, M. R., Surface and Coatings Technol. (submitted).Google Scholar
«9» Kirk-Othmer, , Encyclopedia of Chemical Technology, 3rd edition, vol.21, John Wiley & Sons, New York (1983).Google Scholar
«10» Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).Google Scholar
«11» Rossi, G. and Nulman, M., J. Appl. Phys. 74, 5471 (1993).Google Scholar
«12» Felts, J. T., Soc. Vac. Coaters, Proc. 3 6rh Annu. Tech. Conf., 324 (1993).Google Scholar
«13» Wertheimer, M. R., Thomas, H. R., Perri, M. J., Klemberg-Sapieha, J. E., and Martinu, L., Pure and Appl. Chem. 68, 1047 (1996).Google Scholar