Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T06:53:19.661Z Has data issue: false hasContentIssue false

A Study of Low-Temperature Grown Gap by Gas-Source Molecular Beam Epitaxy

Published online by Cambridge University Press:  10 February 2011

W. G. Bi
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407, U. S. A.
X. B. Mei
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407, U. S. A.
K. L. Kavanagh
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407, U. S. A.
C. W. Tu
Affiliation:
Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093-0407, U. S. A.
E. A. Stach
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22903-2442, U. S. A.
R. Hull
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22903-2442, U. S. A.
Get access

Abstract

We report the effects of growth conditions on the strain and crystalline quality of lowtemperature (LT) grown GaP films by gas-source molecular beam epitaxy. At temperatures below 160 °C, poly-crystalline GaP films are always obtained, regardless of the PH3 low rate used, while at temperatures above 160 °C, the material quality is affected by the PH3 flow rate. Contrary to compressively strained LT GaAs, high-resolution X-ray rocking curve measurement indicates a tensile strain of the LT GaP films, which is considered to be due to PGa antisite defects. The strain is found to be affected by the PH3 flow rate, the growth temperature, and post-growth annealing. Contrary to LT GaAs, no P precipitates are observed in cross-sectional transmission electron microscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Puechner, R. A., Johnson, D. A., Shiralagi, K. T., Gerber, D. S., Droopad, R., and Maracas, G. N., J. Cryst. Growth 111, 43 (1991).Google Scholar
2. Smith, F. W., Calawa, A. R., and Chen, C., IEEE Electron Device Lett. EDL-9, 77 (1988).Google Scholar
3. Melloch, M. R., Mahalingam, K., Otsuka, N., Woodall, J. M., and Warren, A. C., J. Cryst. Growth 111 39 (1991).Google Scholar
4. Warren, A. C., Katzenellenbogen, N., Grischkowsky, D., Woodall, J. M., Melloch, M. R., and Otsuka, N., Appl. Phys. Lett. 58, 1512 (1991).Google Scholar
5. Smith, F. W., Le, H. W., Diadiuk, V., Hollis, M. A., Calawa, A. R., Gupta, S., Frankel, M., Dykaar, D. R., and Hsiang, T. Y., Appl. Phys. Lett. 54, 890 (1989).Google Scholar
6. Smith, F. W., Mater. Res. Soc. Symp. Proc. 241, 3 (1992).Google Scholar
7. Mishra, U. K., Kolbas, R. M., Mater. Res. Soc. Symp. Proc. 241, 159 (1992).Google Scholar
8. Gupta, S., Mourou, G., Smith, F. W., and Calawa, A. R., Mater. Res. Soc. Symp. Proc. 241, 205 (1992).Google Scholar
9. Chen, W. M., Buyanova, I. A., Buyanov, A. V., Bi, W. G., and Tu, C. W., this volume.Google Scholar
10. Buyanova, I. A., Chen, W. M., Buyanov, A. V., Bi, W. G., and Tu, C. W., unpublished.Google Scholar
11. Ramdani, J., He, Y., Leonard, M., El-Masry, N., and Bedair, S. M., Appl. Phys. Lett. 61, 1646 (1992).Google Scholar
12. He, Y., El-Masry, N. A., Ramdani, J., Bedair, S. M., McCormick, T. L., Nemanich, R. J., and Weber, E. R., Appl. Phys. Lett. 65, 1671 (1994).Google Scholar
13. Liang, B. W., He, Y., and Tu, C. W., Mater. Res. Soc. Symp. Proc. 241, 283 (1992).Google Scholar
14. Kaminska, M., Liliental-Weber, Z., Weber, E. R., George, T., Kortright, J. B., Smith, F. W., Tsaur, B. Y., and Calawa, A. R., Appl. Phys. Lett. 54, 1881 (1989).Google Scholar
15. Warren, A. C., Woodall, J. M., Freeouf, J. L., Grischkowsky, D., Mcinturff, D. T., Melloch, M. R., and Otsuka, N., Appl. Phys. Lett. 57, 1331 (1990).Google Scholar
16. Bi, W. G., Deng, F., Lau, S. S., and Tu, C. W., Vac, J., Sci. Technol. B 13, 754 (1995).Google Scholar
17. Smith, F. W., Chen, C. L., Turner, G. W., Finn, M. C., Mahoney, L. J., Manfra, M. J., and Calawa, A. R., Proc. IEEE Int. Electron Devices Meeting (IEEE, New York, 1988), p. 838.Google Scholar
18. Kaminska, M., Weber, E. R., Liliental-Weber, Z., Leon, R., and Rek, Z. U., J. Vac. Sci. Technol. B 7, 710 (1989).Google Scholar