Published online by Cambridge University Press: 01 February 2011
A new simple method for measuring a long-range electrostatic attractive force between metal and semiconductor substrate and charged polymer surfaces has been developed to make clear the effect of the electronic nature of substrate surfaces. Nickel, titanium, and silicon wafer substrates were subjected to various surface pretreatments. The surfaces of polystyrene and polytetrafluoroethylene sheets were positively and negatively charged by triboelectrification, respectively. A progressive increase in the attractive force was observed with a decrease in the distance between the substrate and polymer surfaces. The magnitude of the attractive force was greatly influenced by the substrate pretreatments and the polymers with the oppositely charged surface. The electronic nature of the substrate surfaces evaluated by temperature programmed photoelectron emission method was well correlated with the attractive force. The electrostatic induction generated at the substrate surface is considered to govern the attractive force.